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ABSTRACT 

In 1985, Sabir developed two membrane finite elements having an additional nodal degree of freedom (DRILLING 
ROTATION). The main objective of this important development is to contribute in modeling the complex structures having 
only simple geometrical shape. In this paper, a new analytical integration expression is developed in order to model structures 
have complex geometrical shape. It is of importance to know how these elements will behave when they have irregular shapes. 

 

  ملخص
، )DRILLINGROTATION(جة حرية إضافية  در على كل منهماويت عنصرين غشائيين يحSABIR طـور الباحث 1985في سنة 

لتفادي هذا النقص من . شكل الهندسي البسيط فقطهـذا التطوير المهم كان الهدف منه المساهمة في تمثيل المنشآت المركبة ذات ال
علاقة تكامل جديدة تسمح للعنصرين المذكورين بأخذ أشكال كيفية تساعد بصورة فعالة استعمال الناحية الهندسية نقترح في هذا البحث 

  .في هذه الحالة ترى كيف سيكون سلوك هذين العنصرين .في تمثيل المنشآت المعقدة هندسيا
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1 INTRODUCTION: 

To model a structure, which has complex geometrical shape 
in real problem, by a limited number of elements, already 
formulated to be applied as simple triangular or rectangular 
shape is not sufficient at all; furthermore, imagine how they 
can be used for complex structures. 

Investigations at Cardiff University on the suitability of the 
available finite elements for curved structures, showed that 
to obtain satisfactory converged results, the assumed 
displacement elements required the curved structure to be 
divided into a large number of elements. Consequently, the 
strain-based approach was developed, not only for curved 
but also for flat elements. The approach is based on 

calculating the exact terms representing all the rigid body 
modes and the other components of the displacement 
functions are based on assumed independent strain 
functions insofar as it is allowed by the elasticity 
compatibility equations. This approach usually leads to the 
representation of the displacements by a higher order 
polynomial terms without the need for the introduction of 
additional internal and unnecessary degrees of freedom. 
Also faster convergence is usually obtained when the 
results are compared with the corresponding displacement 
i.e displacement elements having the same total number of 
degrees of freedom.   

In the present paper, a triangular and rectangular element 
having the in-plane rotation as a degree of freedom are 
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developed [1] using the strain model to extend their  
applications domain for the curved structures ; ie triangular 
or quadrilateral element whatever the geometrical shape of 
the element. 

Hence, for reasons of  importance and particularity of these 
elements (contain higher order shape functions expressed in 
terms of independent strains); it is indispensable to 
introduce irregular forms, which require a special 
integration technique, also a specific classification in 
programming level for different geometric forms is needed. 
The performance of these elements, using the new 
integration technique, is tested by applying them to the 
analysis of the problems used in previous publications and 
to obtain solutions for practical problems in engineering. 

 

2 NUMERICAL INTEGRATION  

The element stiffness matrix can be calculated using the 
following Eq.(1)  
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To carry out the integral, we have to choose either 
numerical integration (e.g Gauss integration) or analytical 
integration. One of the disadvantage of the numerical 
integration is the high order of the monomials after the 
three multiplications of integral matrices Eq.(1), which 
would signify many integration points. 

 

3 NEW APPROACH [2] 

The numerical integration is usually the most frequent 
method used for displacement model to evaluate a 
polynomial of order (2n-1); with n integration points. On 
the other hand, if strain model is used where a high–order 
integration is employed, and displacement functions are 
coupled, the passage to the natural system coordinates will 
not be easy. The integration will be done analytically for a 
regular form, and the element stiffness terms are given 
implicitly in [2]. 

This new analytical integration expression allows SBRIER 
and SBTIER elements to have any distorted shape, and we 
will baptize them SBQIER and SBTIER* element. 

With the following procedure, we have: 

[Ke]=[A-1]T[K0][A-1] (2) 
 

[k0] is given by the following expression:      
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Fig 1 : Quadrilateral and triangular elements 

 

Let I be the integral of the monomial c xαyβ over the 
element surface. 

∫∫=
s

dxdyyxcI βα            c =constant 

The evaluation of the expression Eq.(3) always refers to the 
calculating of the integral I. 

As it is known that the triangle is a particular case of the 
quadrilateral, therefore we will present the procedure used 
for the last one only.   

The new integration technique is based on the three parts of 
I [2 , 3]. 
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Fig 2 : Quadrilateral element 

 

Therefore         I = I1 + I2 + I3 

Refers to Fig.2: 
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With   y(x) = a x + b 

In general form :  
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C(k): coefficient in function of β )2 . 
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The general expression of Ip is : 

Hence            ∑
=

=
3

1p
pII  

The integral limits are dependent on the specific form, the 
following Figs. (3,4,…10) show all the possibilities which 
could be met for quadrilateral shapes. 
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Fig.3 : Shape 1 
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Fig.4 : Shape 2 
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Fig.5 : Shape 3 
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Fig.6 : Shape 4 
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Fig.7 : Shape 5 
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Fig.8 : Shape 6 
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Fig.9 : Shape 7 
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Fig.10 : Shape 8 

 

∫∫ ∑
+

=

++−+−−+− −−
++

=
2

1

2121 ))()((1
1

1 β
ααβββα

αβ k

k
m

k
n

k
i

k
i

k
j

k
j xxbabakC

k
dxdyyx

∑
+

=

++−+−−+− −−
++

=
2

1

2121 )6)...()()((1
1

β
ααββ

αβ k

k
m

k
n

k
i

k
i

k
j

k
jp xxbabakC

k
CI



M.T. Belarbi & al. 

 

 40

For the case of triangle shapes, we have the following Figs. 
(11,12). 
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4 SABIR ELEMENTS 

4.1 Rectangular element (SBRIER) [4] 

In this section we discus the SBRIER (Strain Based 
Rectangular In-plane Element Rotation) element 
formulated by Sabir, it is a rectangular element with four 
corner nodes and two degrees of freedom at each node, due 
to its limited performance which appears from its restricted 
geometric, the element is strictly applied in rectangular 
structures or sectors (with the 2nd formulation) [5], more 
than that this element can not be used for curved plate 
structures.  

The following expressions for strains are proposed by 
Sabir. 

εx = a4 + a5y + (a11y2+ 2a12x y3) 

εy = a6 + a7x + (-a11x2-2a12x3y) (7)  

γxy = a8 + a9x + a10y +(a5x + a7y) 

The final shape function for the rectangular element will be 
given by: 

u = a1–a3y+a4x+a8y/2+a5xy+a10y2/2+a11xy2+a12x2y3 

v =a2+a3x+a6y+a8x/2+a7xy+a9x2/2-a11x2y-a12x3y2 (8) 

φ =a3-a5x/2 + a7y/2 + a9x/2 + a10y - 2a11xy - 3a12x2y2 

 

4.2 Triangular element (SBTIEIR) [4] 

The following expressions for strains are proposed by 
Sabir. 

 

εx = a4 + a5y + a7 x 

εy = a6 + a7x + a5y  (9) 

γxy = a8 + a9 (x+y) 

The final shape function for the triangular element will be 
given by the following equations : 

u =a1–a3 y+a4 x+a8y/2+a5 xy+a7(x2-y2)/2+a9 y2/2  

v = a2+a3 x+a6 y+a8x/2+a5(y2-x2)/2+a7xy+a9x2/2   (10) 

φ  = a3-a5 x + a7 y + a9 (x – y)/2  

We should notice that displacement functions contain 
quadratic terms to allow for change in curvature. 

The element stiffness matrix [Ke] can be calculated 
following the usual finite element technique and using the 
following equations. 

[Ke]=[A-1]T[K0][A-1]                                                (11) 

With  

[K0]= [ ] [ ][ ] yxQQ d.d..D
s

T∫∫   (12) 

To allow the elements have a quadrilateral and any 
triangular shape, we will use the new approach in the 
following tests.   

 

5 APPLICATIONS 

5.1 High order Patch Test : Pure bending of a 
cantilever beam. 

This example was also treated by Ibrahimbégivic, Frey and 
Rebora in their recent paper of synthesis [6], in order to 
show the performance of the finite elements with traditional 
formulation but with not-conventional interpolations. They 
took ν=0 (although it is about a real plane problem).   

A cantilever beam with rectangular section (L x T x H = 10 
x 1 x 2) is subjected to a pure bending formed by two nodal 
forces (P=10) forming a couple (consisting loading case). 

The loading case cc1 Fig.13 represents the high order Patch 
–Test [7], two rectangular and four triangular elements of 
membrane (regular mesh) model the cantilever beam. 

Let us compare the behavior of SBQIEIR and SBTIEIR* 
with the robust element of Ibrahimbégovic et al. [6]. 

According to this load pattern, it can be says that the 
cantilever beam is subjected to pure bending and it can be 
translates this fact by supposing that the only no null stress 
is σxx.     
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Fig. 13 : Pure bending of a cantilever beam. Data (cc = load case) 

 

Table.1 gives the results obtained with the regular mesh. 
For SBQIEIR element, the consisting loading case (cc1) 
provides the exact solution; the error is very small in the 
case of inconsistent load cc2 (but.quite practical!). On the 
other hand in the case of the SBTIEIR* element the results 
obtained are very far from the analytical solution for the 
two cases of loading (regular mesh!).   

 
Table 1 : Pure bending of a cantilever beam; regular mesh. 

 SBQIEIR SBTIEIR* Ibrahimbegovic et al. 
Réf. [6]  

Loading case VB θzB σXa VB θZb σxA VB ψB σxA 

1 : Couple 1,0 0,2 30,0 0.58 0,12 21.04 1,0 0,2 30,0 

2 : Moment 1,0067 0,202 30,0 0,58 0,12 21,11 1,0067 0,2017 30,0 

Beams theory 
Réf. [6] 1,0 0,2 30,0 1,0 0,2 30,0 1,0 0,2 30,0 

 

5.2 MacNeal’s elongated beam 

MacNeal and Harder [8] cantilever beam of dimension (6 x 
2 x 1) whose details are given in Fig.14 is subjected to end 
bending moment (M=10), and applied charge at free end 
(P=1). 

The cantilever is modeled by six rectangular (Fig.14a), 
trapezoidal (Fig.14b) and parallelogram (Fig.14c) 
membrane elements. 

 
Tableau 2 : Tip deflection for MacNeal’s elongated beam. 

Pure bending End shear Element 
Model Regula

r 
Trapezoi

dal Parallel Regular Trapezoid
al Parallel 

Q4 0,0251 0,0059 0,0084 0,0100 0,0029 0,0037 
PS5β 0,270 0,0124 0,1960 0,1073 0,0056 0,0683 
AQ 0,2457 0,2206 0,2379 0,0977 0,0871 0,0944 
MAQ 0,2457 0,2393 0,2403 0,0977 0,0943 0,0955 
Q4S  - - - 0,1073 0,1066 0,1068 
07β 0,270 0,2694 0,2678 0,1073 0,1068 0,1065 
SBQIEIR 0,2670 0,2667 0,2667 0,1042 0,1027 0,1027 
SBTIEIR* 0.1180 0.0038 0.1010 0.0469 0.0005 0.0357 
Beams 
Theory 0,270 0,1081 

 

 

 

MacNeal [9] has proved that analysis using the trapezoidal 
mesh always leads to the kind of unsatisfactory 
performance termed trapezoidal locking.  

The results obtained for SBQIEIR and SBTIEIR* 
elements are compared with the others obtained from the 
known quadrilateral finite elements Table 2. 

From these three mesh cases (Fig14.a, 14b, and 14c), we 
proved the efficiency of the present element SBQIEIR. 
From the beam tip deflections in Table 2, it can be seen that 
all elements with drilling degrees of freedom can 
circumvent the trapezoidal locking whilst Q4 and PS5β  will 
always lock [9]. 

We come to the conclusion that SBQIEIR element presents 
more performance than other elements for this type of 
bending problems, and still stable despite geometric 
distortion, whilst a bad results are obtained with 
SBTIEIR* element.      
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Fig.14 : MacNeal’s elongated beam. Data and mesh. 

 

5.3 Allman's cantilever beam  

It is useful to know how behaves a finite element presents a 
significant geometrical distortion. Sze, Chen and Cheung 
studied this problem [10], in order to test the performance 
and the robustness of elements 07β et 07β∗    

It is a question of evaluating vertical displacement VA at the 
free end of a cantilever beam (Fig.15) subjected to a 
uniform vertical load (of resultant W).   
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Fig.15 :   Allman's cantilever beam; Data and mesh. 

 

The researchers use this example as a test to validate the 
plane elements. It possible to examine the aptitude of an 
element of the membrane type to simulate problems 
dominated by the bending. These elements SBQIEIR and 
SBTIEIR* are compared with the analytical solution 
(exact) given by Timoshenko and Goodier [11] and with 
other known elements :   

( ) 0,3553PL
2EH

5υ4
3EI
PLV

3

A =
+

+=             (13) 

The results obtained for the two cases of mesh (regular and 
distorted) are presented in Table 3.  

In the case of the regular mesh Fig15b, the results obtained 
for SBQIEIR are powerful and comparable with the 
analytical solution given by the beams theory contrary to 
SBTIEIR* element. For the case of the distorted mesh 
Fig14c the very good performance of SBQIEIR element is 
confirmed. The corresponding results are more precise than 
the results given by SBTIEIR * element (see table 3).   

 

 

 

 

 

 

 

 

Table.3 : Allman's cantilever beam. Vertical displacement at A.   

Element 
/Formulation Mesh Vertical 

displacement at A 

Q4 Reg. 0,2412 
Q4 Dist. 0,2117 

PS5β 
PS5β 

Reg. 
Dist. 

0,3475 
0,3286 

AQ Reg. 0,3261 
AQ Dist. 0,3365 

MAQ Reg. 0,3262 
MAQ Dist. 0,3382 
QR4b Reg. 0,3475 
QR4b Dist. 0,3471 
Q4S Reg. 0,3475 
Q4S Dist. 0,3467 
07β Reg. 0,3475 
07β Dist. 0,3475 

Ref. [12] Reg. 0,3443 
Ref. [12] Dist. 0,3066 
Ref.  [8] Reg. 0,3407 
Ref.  [8] Dist. 0,2977 
Ref.  [13] Reg. 0,3027 
Ref.  [13] Dist. - 
Ref.  [14] Reg. 0,3507 
SBQIEIR Dist. 0,3482 
Ref.  [14] Reg. 0.1389 
SBTIEIR* Dist. 0.1400 

Exact solution according Ref [11] 
: 0,3553 

 

6 CONCLUSION 

- It can be said that strain model has been dominated 
nowadays, because it allows the displacement to be 
represented by a higher order polynomial terms without the 
need for the introduction of the degrees of freedom or 
additional nodes. 

- The robustness of the present element SBQIER via  the 
distorted mesh was shown, this is due probably to the  
analytical technique of integration used contrary to 
triangular  element SBTIER*  remains very sensitive to the  
mesh distortion, the results are still bad even for a regular  
mesh;  thus, practically it is advised to use  SBQIER 
element. 
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