DETERMINATION AND ANALYSIS OF DAILY RELIABILITY LEVEL OF MUNICIPAL WASTEWATERTREATMENT PLANT

  • DJEDDOU MESSAOUD Civil Engineering and Hydraulic Department, Faculty of Sciences and Technology, Mohamed Kheider University of Biskra
  • ACHOUR BACHIR Civil Engineering and Hydraulic Department, Faculty of Sciences and Technology, Mohamed Kheider University of Biskra
  • MARTAUD MAURICE Lyonnaise des Eaux. Centre Technique Assainissement Réseaux, 51 Avenue de Sénart, BP29, 91230 Montgeron

Résumé

Cette étude présente une détermination et l'analyse duniveau quotidien de fiabilité d'une station de traitement des eaux usées
résiduaires utilisant un procédé à boue activée dans l'Est de l'Algérie, on utilisant une méthodologie développée par Nikuet al.
(1979) pour la détermination du coefficient de fiabilité (CdF), pour les concentrations effluentes de la DBO
5, de la DCO, et des
MES obtenus à partir des données de quatre ans d'opération (2009-2012). Nous avons calculé le Coefficient de fiabilité,et les
normes algériennes de rejet pour déterminer le niveau quotidien de fiabilité pour les paramètres considérés.
Les résultats ont prouvés en global un bon niveau de performances puisque les concentrations de la DBO5et la DCO des eaux
traités présentent une conformité avec les normes de rejet en Algérie, par contre le niveau de performance des MES est très
médiocre dues aux problèmes par l'arrêt du troisième dessableur-déshuileur, et la grande variabilité des quantités et de la
qualité des eaux usées

 

This paper presents a determination and analysis of daily reliability level of activated sludge wastewater treatment plant in
Eastern of Algeria, using a method developed by Niku et al (1979) for determination of coefficient of reliability (COR), for
effluent concentrations of BOD
5
, COD, and TSS obtained from four years data operation (2009-2012). We calculated COR,
and using Algerian standards concentrations we have determined a daily reliability level for the considered parameters.
The results showed that in global effluent BOD5and COD performances are in terms of compliance with the Algeria standards,
effluent TSS performances are not enough good due to the problem in grit chamber, and the large variability of the influen t
quantity and quality.

Références

[1] Al Saleem, S. S. A., 2007. Performance Analysis of
Sanitary Wastewater Treatment Plants: ReliabilityBased Analysis. Master thesis, King Saud University,
KSA, 198p.
[2] Baxter, C. W., Lence, B. J., and Coffey, B. M.,
2003. Analyzing Operational Risk in Potable Water
Supply Using Conditional Reliability. World Water
Congress, Pennsylvania, USA.
[3] Berthouex, P. M. and Hunter, W. G., 1981. Simple
statistics for interpreting environmental data", Journal
of Water Pollution Control Federation, vol. 53, n. 2,
167-175.
[4] Berthouex, P. M. and Hunter, W. G., 1983. How to
construct reference distributions to Evaluate treatment
plant effluent quality", JWPCF, v. 55, no. 12, 1417-1424.
[5] Burmaster, D. E. and Hull, D. A., 1997. Using
Lognormal distributions and Lognormal Probability
Plots In Probabilistic Risk Assessments. Human and
Ecological Risk assessment, Vol. 3, No. 2, pp235-255.
[6] Charles, K.J., Ashbolt, N.J., Roser, D.J., et al.,
2005. Effluent quality from 200 on-site sewage
systems: design values for guidelines. Water Sci.
Technol. 51 (10), pp163–169.
[7] Chorafas, D. N., 1960. Statistical Process and
Reliability Engineering. D. Van Nostand Co.,
Princeton, New Jersey.
[8] Cohen, A. I., Bar-Shalom, Y. W., et al., 1975. A
Quantitative Method for Effluent Compliance
Monitoring Recourses Allocation. EPA-600/5-75-015,
U.S. Environmental Protection Agency, Washington,
USA.
[9] Crites, R. and Tchobanoglous, G., 2000. Tratamiento
de aguas residuales en pequeňas poblaciones. McgrawHill Interamericana S.A., Bogota, Colombia, 776p.
[10] Culp, G., Wesner, G., Williams, R., Hughes, M.V.,
1980. Wastewater Reuse and Recycling Technology.
Noyes Data Corporation, New Jersey, USA.
[11] D'Agostino, R. B. and Stephens, M. A., 1986.
Goodness-of-fit Techniques, MARCEL DEKKER,
Inc, New York, USA.
M.DJEDDOU & al
46
[12] D'Agostino R. B., Belanger A., D'Agostino JR. R.
B., (1990), "A Suggestion for Using Powerful and
Informative Tests of Normality", The American
Statistician, Vol 44, No. 4, pp316-321.
[13] Dean, R. B.; Forsythe, S. L. 1976a-b. Estimating the
reliability of advanced waste treatment. Part 1 and Part
2, Water & Sewage Works.
[14] Eisenberge, D., Soller, J., Sakaji, R., and Olivier,
A., 2001, A Methodology to Evaluate Water and
Wastewater Treatment Plant Reliability. Water
Science and Technology, Vol. 43, No. 10, pp91-99.
[15] Ellis, G. W., Grasso, D., and Ge, X., 1993. ARMA
Processes and Reliability-Based Design of
Wastewater-Treatment Facilities. Journal of
Environmental Engineering, Vol. 119, No. 3, pp463-477.
[16] Etnier, C., Willets, J., Mitchell, C., et al., 2005.
Decentralized Wastewater Treatment System
Reliability Analysis. EcoEng-Newsletter, N°11.
Avaible on: http://www.iees.ch/EcoEng051.
[17] Gupta, A.K., and Shrivastava, K., 2006. Uncertainty
analysis of conventional water treatment plant design
for suspended solids removal. J. Environ. Eng. 132
(11), pp1413–1421.
[18] Helsel, D. R. and Hirsch, R. M. 1992. Statistical
methods in water resources. Techniques of Water
Resources Investigations Series, Book 4, chapter A3,
U.S. Geological Survey, 509 p.
[19] JORA, 2006. Décret exécutif n°06-141 du 19 avril
2006 définissant les valeurs limites des rejets
d'effluents liquides industriels, Journal Officielle de la
République Algérienne N°26 du 23 avril 2006.
[20] Kahn, H. D., and Marvin, B. R., 1989. Use of
Statistical Methods in Industrial Water Pollution
Control Regulations in the United States.
Environmental Monitoring and Assessment, Vol. 12,
No. 2-3, pp129-148.
[21] Kottegoda, N. T., and Rosso, R., 2008, "Statistic,
Probability, and Reliability for Civil and
Environmental Engineers," Blackwell Publishing Ltd.
2
nd
Edition, Oxford, UK, 718p.
[22] Loftis, J. C., Ward, R. C., and Smilli, G. M., 1983.
Statistical Models for Water Quality Regulation.
Journal Water Pollution Control Federation, Vol. 55,
No. 8, pp1098-1104.
[23] McBride, G.B., 2003. Confidence of compliance:
parametric versus nonparametric approaches. Water
Research. 37, pp3666–3671.
[24] McBride, G. B., Ellis, J. C., 2001. Confidence of
compliance: a Bayesian approach for percentile
standards. Water Research. 35 (5), pp1117–1124.
[25] Metcalf and Eddy, 2003. Wastewater engineering
treatment and reuse. Metcalf & Eddy, Inc., 4th. Ed.
New York, 1819p.
[26] Niku, S., Schroeder, E. D., and Samaniego, F. J.,
1979. Performance of Activated Sludge Processes and
Reliability-Based Design. Journal Water Pollution
Control Federation, Vol.51, No. 12, pp2841-2857.
[27] Niku S., and Schroeder E. D., 1981. Stability of
Activated Sludge Processes Based on Statistical
Measures. Journal Water Pollution Control Federation,
Vol. 53, No. 4, pp129-143.
[28] Niku, S., Schroeder, E. D., and Haugh, R. S., 1982.
Reliability and Stability of Trickling Filter Processes",
Journal Water Pollution Control Federation, Vol. 54,
No. 2, pp457-470.
[29] Niku, S. et al., 1981, Performance of activated sludge
process: reliability, stability and variability.
Environmental Protection Agency, EPA Grant No.
R805097-01, 124p.
[30] Olivera, S. C., and Von Sperling, M., 2006.
Performance and reliability of wastewater treatment
plants. Doctorate Thesis, School of Engineering,
Federal University of Minas Gerais, Belo Horizonte,
231p.
[31] Olivera, S. C., Von Sperling, M., 2008, Reliability
analysis of wastewater treatment plants". Water
Research 42, pp1182-1194.
[32] Ossenbruggen, P. J., Constantine K., Collins M. R.,
et al., 1987. Toward Optimum Control of the
Activated Sludge Process with Reliability Analysis.
Civil Engineering Systems, Vol. 4, No. 2, pp77-86.
[33] Ott, W.R., 1995. Environmental Statistics and Data
Analysis. Lewis Publishers, New York, 313p.
[34] Pearson, E. S., D'Augustine, R. B. and Bowman, K.
O., 1977. Tests for Departure from Normality:
Comparison of Powers. Biometrika, N 64, 231-246.
[35] Porter, K.S., 1975. Percentiles mean relation for
effluent assessment. J. Environ. Eng. Div., vol. 101
(EE3).
[36] Quek, S.T., Ang, K.K., and Ong, S.L., 1995.
Reliability of domestic waste biofilm reactors. J.
Environ. Eng. 121 (11), pp785–790.
[37] Shultz, D. W., and Parr, V. B., 1982. Evaluation and
Documentation of Mechanical Reliability of
Conventional Wastewater Treatment Plant
Components. EPA-600/2-82-044, EPA-68-03-2712,
U.S. Environmental Protection Agency, Washington,
USA., pp908-915.
[38] USEPA, 1991. Technical Support Document for
Water Quality-based Toxics Control. EPA 505/2690-001, U.S. Environmental Protection Agency,
Washington, USA. 335p.
[39] Ward, R. W. et al., 1981. Relating Stream Standards
to Water Quality Monitoring Practice. Final Report for
Natural Science Foundation Grant Number PRA-7913073,Colorado State University, Fort Collins, USA
[40] Wheatland, A.B., 1972. Statistical expression of
effluent quality standards. Water Research 6, pp339–
340.
[41] Woodruff, B. W. and Moore, A. H., 1988.
Application of Goodness of Fit Tests in Reliability.
Krishnaiah, P. R., and Rao, C. R., eds, "Handbook of
Statistic: Quality Control and Reliability", Vol. 7,
Elsevier Science Publishers, Netherlands, USA.
pp113-120
Comment citer
MESSAOUD, DJEDDOU; BACHIR, ACHOUR; MAURICE, MARTAUD. DETERMINATION AND ANALYSIS OF DAILY RELIABILITY LEVEL OF MUNICIPAL WASTEWATERTREATMENT PLANT. Courrier du Savoir, [S.l.], v. 17, mai 2014. ISSN 1112-3338. Disponible à l'adresse : >http://revues.univ-biskra.dz/index.php/cds/article/view/351>. Date de consultation : 05 jui. 2020
Rubrique
Articles