LA PERTE DE CHARGE DANS LES CANAUX A FOND MOBILE EXAMEN DE L’EFFET DES FORMES DU FOND

  • M. HASBAIA

Résumé

Le calcul des écoulements dans les canaux à fond mobile est effectué souvent par des formules de type Strickler qui ignore le
frottement dû aux formes des fonds. Depuis les travaux d’Einstein et Barbarossa (1952), de multiple formules et approches ont
été proposées pour tenir compte du frottement des formes des fonds. Dans ce travail, nous avons utilisé les données de 2790
expériences de laboratoire pour expliciter l’effet des formes des lits sur la résistance à l’écoulement, en comparant les
profondeursd’eau calculées par les deux formules de Strickler et de Karim (1995) (qui tiennentcompte des différentes formes
des lits) aux profondeurs mesurées. Les résultats obtenus par la formule de Strickler sont meilleurs sur les fonds plats, elle
explique 71% des données avec des erreurs inférieuresà 20% ; quant à la formule de Karim (1995) ce pourcentage est de
l’ordre de 65%. Sur les fonds avec formes c’est plutôt le contraire, la formule de Karim (1995) explique 74% des données avec
des erreurs inférieures à 20% par contre la formule de Strickler n’explique que 56% de ces mêmes données. En fait, en
l’absence d’une formule universelle, la prise en charge du frottement dû aux formes des lits est incontournable

 

 

The open channel flow is often calculated by a typical formula (as Strickler formula) that ignores the friction due to the
bedforms, since the works of Einstein and Barbarossa (1952), several formulas and approaches have been proposedto express
this friction. In this article we used 2790 flume data to show the effect of the bedforms on flow resistance, in this way, we
compare the flow depths calculated by the formulas of Strickler and Karim (1995) (taking into accoun t bedfroms) to the
measured flow depths. In the flat beds, the results obtained by Strickler formula are the best, it explains 71% of data with errors
less than 20%, for Karim (1995) formula this percentage is just 65%. For bed with bedforms, it is rather the contrary; the
formula of Karim (1995) explained 74% of the data with error less than 20%, against Strickler's form ula which explains only
56% of the same data. In fact, in the absence of a universalflow resistance formula, the bedforms friction consideration is
unavoidable

Références

[1] Alam, A. M. Z., and Kennedy, J. F., 1969, Friction
factor for flow in sand-bed channels, Journal of
Hydraulics division., ASCE, 95(6), pp.1973-1992
[2] Barton, J. R., and Lin, P.N., 1955. A Study of the
Sediment Transport in Alluvial Channels, Report No.
CEF 55JRB2, Colorado State University, Fort Collins,
Colorado, , 41 pp.
[3] Bogardi J. and Yen C. H., 1939. Tractation of pebboles
by flowing water, p. 66.
[4] Brownlie, W. R., 1981. Computation of alluvial
channel data: laboratory and field, California Institute
of Technology, Passadena, California, Report KH-R-43B, p.213.
[5] Brownlie, W. R., 1983, Flow depth in sand-bed
Channels, , Journal of hydraulics Engineering, Vol.
109 No.7, pp. 959-991
[6] Cao H., 1985. Résistance hydraulique d’un lit à gravier
mobile à pente raide; Etude expérimentale. Phd thesis,
Ecole Polytechnique Fédérale de Lausanne, p. 285.
[7] Casey H. J., 1935. Uber Geschiebebewegung, Preuss.
Versuchsanst. Fur Wasserbau und Schifibau, Berlin,
19, p. 86
[8] Chu, H., and Mustafa, M. G., 1979, A mathematical
model for alluvial channel stability, Proceeding of
engineering workshop on sediment hydraulics,
California state university, Long Beach, Feb.3, pp.
130-150
[9] Chyn, S.D., 1935. An Experimental Study of the Sand
Transporting Capacity of the Flowing Water on Sandy
Bed and the Effect of the Composition of the Sand,
thesis presented to the Massachusetts Institute of
Technology, Cambridge, Massachusetts, 33 pp.
[10] Costello, W.R., 1974. Development of Bed
Configuration i n Coarse Sands, Report 74-1,
Department of Earth and Planetary Science,
Massachusetts Institute of Technology, Cambridge,
Massachusetts.
[11] Davies, T. R, 1971. Summary of Experimental Data
for Flume Tests over Fine Sand, Department of Civil
Engineering, University of Southampton.
[12] Einstein, H. A., and Barbarossa, N. L., 1952, River
channel roughness, Trans. ASCE, 117, PP. 1121-1146
[13] Engelund, F., and Hansen, E., 1967, A monograph on
sediment transport in alluvial streams, Teknisk Forlag,
Copenhagen, Danemark. p. 63
[14] Einstein H. A. and Chien N., 1955. Effects of heavy
sediment concentration near the bed on velocity and
sediment distribution, MRD series N°8, University of
California.
[15] Engelund, F., and Hansen, E., 1967, A monograph on
sediment transport in alluvial streams , Teknisk Forlag,
Copenhagen, Danemark. p. 63
[16] Gao, P., and Abrahams A. D., 2004, Bedload transport
resistance in rough open channel flows, Earth surface
process and landforms, 29, pp. 423-435.
[17] Garde, R. R., and Ranga Raju, K. G., 1966, Resistance
relationships for alluvial channel low, Journal of
Hydraulics division, ASCE, Vol. 92, No. HY4, pp. 77-100.
[18] Griffiths, G. A. 1989. Flow Resistance in Coarse
Gravel Bed Rivers, Journal of the Hydraulics
Research, Vol 107, N°. HY7, pp. 899-918.
M.HASBAIA
58
[19] HoPang-Yung, 1939. Abhangigkeit der
geschiebebewegung von der kornform und der
temperature, Preuss. Versuchsanst. Fur Wasserbau
und Schifibau, Berlin, 37, p. 43.
[20] Hasbaia M. 2011. Etude critique du transport solide et
ses conséquences dans les cours d’eau naturels, thèse
de doctorat soutenu à l’université des scinces et de
Technologie Mohamed Boudiaf d’Oran USTO.
[21] Hu, S., and Abrahams A. D., (2005). “The effect of
bed mobility on resistance to overland low.” Earth
Surf. Process. LandForms, 30, 1461-1470.
[22] Gilbert G. K., 1914. The transportation of Debris by
Running water, US Geological Survey, Professional
paper 86.
[23] Jarrett, R. D., 1984, Hydraulics of high gradient
streams., Journal of hydraulics engineering., ASCE,
vol. 110, No. 11, pp. 1519-1539
[24] Julien P. Y., 1995. Erosion and sedimentation, C. U.
press., Cambridge university press, p. 280.
[25] Julien P. Y., and Raslan, Y. (1998). “Upper-Regime
plane bed.” Journal of Hydraulic Engineering, ASCE,
124(11),1086-1096.
[26] Karim F., 1995, Bed configuration and hydraulic
resistance in alluvial-channel flows, Journal of
hydraulics Engineering, Vol. 121, No. 12, pp. 15-25
[27] Mavis F. T., Liuand E. Soucek, 1937. The
transportation of detritus by flowing Water-II, Iowa
university studies in engineering, Bulletin 11, p. 28.
[28] Meyer Peter E. and Muller R., 1948. Formulas for bedload transport, IAHSR, Stockholm, 39-64.
[29] Mutter, Douglas Gerald, 1971. A Flume Study of
Alluvial Bed Configurations, Masters thesis submitted
to the Faculty of Graduate Studies, University of
Alberta.
[30] Nordin, C. F., 1976. Flume Studies with Fine and
Coarse Sands, Open File Report 76-762, U.S.
Geological Survey, Washington, D.C., 18 pp.
[31] Onishi, Y., Jain, S. C. and Kennedy, J. R., 1976.
Effects of Meandering In alluvial Channels, Journal of
the Hydraulics Division, ASCE; Vol. 102, No. HY7,
pp. 899-917.
[32] Paintal A. S., 1971. Concept of of critical shear stress
in loose boundary open channel, Journal of Hydraulic
research, 1, 90-113.
[33] Pratt , C. J., 1970. Summary of Experimental Data for
Flume Tests over 0.49 mm Sand, Department of Civil
Engineering, University of Southampton.
[34] Recking, A., (2006). “An experimental study of grain
sorting effects on bedload.” Ph.D. thesis, 261pp., Univ.
of Lyon, Lyon, France (available at
www.lyon.cemagref.fr/doc/these/recking/)
[35] Recking, A., Frey, P., Paquier, A., Belleudy, P., and
Champagne, J. Y., (2008). “Feedback between bed
load transport and flow resistance in gravel bed
rivers.” Water Resources Research, Vol. 44, W05412,
doi:10.1029/2007WR006219.
[36] Richardson, E. V., and Simons., D. B., 1967,
Resistance to flow in sand channels, Proceeding 12th
congress of IAHR, Vol. 1, pp. 141-150
[37] Rickenmann D., 1990. Bed-load transport capacity of
slurry flows at steep slopes, Versuchsanslt für
wasserbau, Hydrologie und glaziologie der
eidenössischen, Zurich, p. 249.
[38] Singh, B., 1960. Transport of Bed-Load in Channels
with Special Reference t o Gradient Form, PhD thesis
presented to the University of London, London,
England.
[39] Smart G. and Jaeggi M., 1983. Sediment transport on
steep slopes, Nr. 64, Mitteilungen der versuchsanstalt
für wasserbau, Hydrologie und glaziologie, zurich, p.
191.
[40] Stein, R. A., 1965. Laboratory Studies of Total Load
and Apparent Bed Load, Journal of Geophysical
Research, Vol. 70, No. 8, pp. 1831-1842.
[41] Straub, L. G., Anderson, A. G. and Flammer,G. H.,
1958. Experiments on the Influence of Temperature on
the Sediment Load, M.R.D. Sediment Series No. 10,
St. Anthony Falls Hydraulic Laboratory, Minneapolis,
Minnisota.
[42] Straub, L. G., 1954. Transportation Characteristics
Missouri River Sediment, M.R.D. Sediment Series No.
4, St.Anthony Falls Hydraulic Laboratory,
Minneapolis, Minnisota.
[43] Taylor, B. D., 1971. Temperature Effects in Alluvial
Streams, W. M. Keck Laboratory of Hydraulics and
Water Resources Report KH-R-27, California Institute
of Technology, Pasadena, California, 204 pp.
[44] United States Army Corps of Engineers, U. S.
Waterways Experiment Station, Vicksburg,
Mississippi, 1936B. Flume Tests of Synthetic Sand
Mixture(sand No. l o ) , Technical Memorandum 95-1
(unpublished), 1936B, 21 pp.
[45] United States Army Corps of Engineers, U.S.
Waterways Experiment Station, Vicksburg,
Mississippi, 1935B. Effect of Turbidity on Sand
Movement, unpublished report of experiments.
[46] Vanoni, V. A., and Brooks, N. H. , 1957. Laboratory
Studies of the Roughness and Suspended Load of
Alluvial Streams, M.R.D. Sediment Series No. 11,
California Institute of Technology Sedimentation
[47] Laboratory, 121 pp.
[48] Vanoni, V. A., and Hwang, Li San, 1967. Relation
Between Bed Forms and Friction in Streams, Journal
of the Hydraulics Division, ASCE, Vol. 93, No. HY3,
Proc. Paper 5242, pp. 121-144.
[49] Wang, S., and White, W. R., (1993). “Alluvial
resistance in transition regime.” Journal of Hydraulic
Engineering, ASCE, 119( 6), 725-741
[50] Williams, G. P., 1970. Flume Width and Water Depth
Effects in Sediment Transport Experiments, U.S.
Geological Survey, Professional Paper 56 2-H.
[51] Willis, J. C., Coleman N. L., and Ellis, W. M. (1972).
“Laboratory study f transport of fine sand.” Journal of
Hydraulic Engineering, ASCE, 98(3), 489-501.
La perte de charge dans les canaux a fond mobile examen de l’effet des formes du fond
59
[52] White, W. R., Paris, E., and Bettes, R., 1979, A new
general method for predicting the frictional
characteristics of alluvial streams, Report No. IT187,
Hydraulics’ research station, Wallingford, England
[53] Wu, W., and Wang, S. S. Y., (1999). “Movable bed
roughness in alluvial rivers.” Journal of Hydraulic
Engineering,ASCE, 125(12), 1309-1312”
[54] Yen, B. C., 2002, Open channel flow resistance, J.
Hydraul. Eng., Vol. 128, No. 1, pp.20-39
[55] Yu Guoliang, and Lim Siow-Yong, 2003, Modified
Manning formula for flow in alluvial channels with
sand-beds, Journal of Hydraulic Research, Vol. 37
NO. 3, pp 303-312
[56] Znamenskaya, N. S., 1963. Experimental Study of the
Dune Movement of Sediment, Transactions of the
State Hydrologic Institute (Trudy GGI) No. 108, pp.
89-111. Translated by L. G. Robbins
Comment citer
HASBAIA, M.. LA PERTE DE CHARGE DANS LES CANAUX A FOND MOBILE EXAMEN DE L’EFFET DES FORMES DU FOND. Courrier du Savoir, [S.l.], v. 17, mai 2014. ISSN 1112-3338. Disponible à l'adresse : >http://revues.univ-biskra.dz/index.php/cds/article/view/355>. Date de consultation : 05 jui. 2020
Rubrique
Articles