INCREASING FLUX DENSITY BY HTS SHIELDING PELLET IN SUPERCONDUCTING SYNCHRONOUS MACHINE BASED ON FLUX CONCENTRATION

  • R. BOUMARAF Laboratoire de Génie Electrique de Biskra LGEB, Université de Biskra, BP 145, Biskra
  • S. M. MIMOUNE Laboratoire de Modélisation des Systèmes Energétiques LMSE, Université de Biskra, BP 145, Biskr
  • L. ALLOUI Laboratoire de Modélisation des Systèmes Energétiques LMSE, Université de Biskra, BP 145, Biskr
  • M. L. KHENE Laboratoire de Modélisation des Systèmes Energétiques LMSE, Université de Biskra, BP 145, Biskr

Résumé

In this paper, we propose a solution which enhances the performance of the inductor in high-power superconducting
synchronous machines based on the flux concentration. The work is done by keeping the same topology and using a high
temperature superconducting shielding pellet located between the two coils of the inductor. This pellet permits to recover the
magnetic field which vanishes in the medium region due to the opposite direction of the coils. We did a 3D magnetostatic field
analysis using the control volume method with unstructured grid. This analysis showed that the suggested solution allowed
obtaining a maximum efficiency of about 8% in the flux density.

Références

R. Boumaraf & al
162
[10] L. Alloui, F. Bouillault, S. M. Mimoune, “Numerical
study of the influence of flux creep and of thermal
effect on dynamic behaviour of magnetic levitation
systems with a high-Tc superconductor using control
volume method” EPJ. App. Phys. 37 (2) (2009) 191.
[11] L. Alloui, F. Bouillault, L. Bernard, J. Lévêque, and S.
M. Mimoune,“3D modeling of forces between magnet
and HTS in a levitation system using new approach of
the control volume method based on anunstructured
grid,” Physica C 475, pp 32–37, 2012[1] Swarn S. Kalsi “Development Status of
Superconducting Rotating Machines,” IEEE PES
Meeting, New York, 27-31 January 2002
[2] P. Tixador, F. Simon, H. Daffix, and M. Deleglise,
“150-kW experimental superconducting permanent-
magnet motor,” IEEE Trans. Appl. Supercond., vol. 9,
no. 2, pp. 1205–1208, Jun. 1999.
[3] P. J. Masson, P. Tixador, and C. A. Luongo, “Safety
torque generation in HTS propulsion motor for general
aviation aircraft,” IEEE Trans. Appl. Supercond., vol.
17, no. 2, pp. 1619–1622, Jun. 2007.
[4] E. Ailam, D. Netter, J. Lévêque, B. Douine, P. Masson,
and A. Rezzoug, “Design and testing of a
superconducting motor,” IEEE Trans. Appl.
Supercond.., vol. 17, no. 1, pp. 27–33, Mar. 2007.
[5] P. Masson, D. Netter, D. Leveque, and A. Rezzoug,
“Experimental study of a new kind of superconducting
inductor,” IEEE Trans. Appl.Supercond., vol. 13, no. 2,
pp. 2239–2242, Jun. 2003.
[6] R.Moulin, J. Lévêque, L. Durantay, B. Douine, D.
Netter, and A. Rezzoug, “ Superconducting Multistack
Inductor for Synchronous Motors Using the
Diamagnetism Property of Bulk Material,” IEEE
Trans. Ind. Electronics., vol. 57, no. 1, pp. 146–153,
Jun. 2010.
[7] S. V. Patankar, “Numerical heat transfer and fluid
flow”, Series in computational methods in mechanics
and thermal sciences. Hemisphere publishing
corporation, 1980.
[8] A. Cheriet, M. Feliachi, S. M. Mimoune,
“Nonconforming mesh generation for finite volume
method applied to 3-D magnetic field analysis”, The
European Physical Journal Applied Physics EPJAP,
Vol. 37, issue 2, pp. 191-195, February 2007.
[9] A. Cheriet, M. Feliachi, S. M. Mimoune, “3-D
movement simulation technique in FVM method
application to eddy current non-destructive testing”,
The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering
COMPEL, Vol. 28, issue 1, pp. 77-84, January 2009.
Comment citer
BOUMARAF, R. et al. INCREASING FLUX DENSITY BY HTS SHIELDING PELLET IN SUPERCONDUCTING SYNCHRONOUS MACHINE BASED ON FLUX CONCENTRATION. Courrier du Savoir, [S.l.], v. 17, mai 2014. ISSN 1112-3338. Disponible à l'adresse : >http://revues.univ-biskra.dz/index.php/cds/article/view/377>. Date de consultation : 10 jui. 2020
Rubrique
Articles