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ABSTRACT 

Data warehouses store large amounts of data usually accessed by complex decision making queries with many selection, join 
and aggregation operations. To optimize the performance of the data warehouse, the administrator has to make a physical 
design. During physical design phase, the Data Warehouse Administrator has to select some optimization techniques to speed 
up queries.  He must make many choices as optimization techniques to perform, their selection algorithms, parameters of these 
algorithms and the attributes and tables used by some of these techniques. We describe in this paper the nature of the 
difficulties encountered by the administrator during physical design. We subsequently present a tool which helps the 
administrator to make the right choices for optimization. We demonstrate the interactive use of this tool using a relational data 
warehouse created and populated from the APB-1 Benchmark. 
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1 INTRODUCTION 

The main characteristics of data warehouses are their large 
size and complexity of OLAP (On-Line Analytical 
Processing) queries due to the operations of selection, join 
and aggregation. These characteristics have made the task 
of administering increasingly complex. Traditionally, in 
databases business applications like OLTP (On-Line 
Transaction Processing), the task of an administrator was 
mainly concentrated on the user management and use of a 
limited number of optimization techniques as indexes and 
views. 

Optimizing the execution time of queries is a key 
requirement of data warehouse users. To satisfy this 
requirement, the data warehouse administrator (DWA) must 
perform a physical design that is crucial to ensure good 
performance. The physical design must determinate how a 
query should be run efficiently on the data warehouse. 
Thus, the DWA has a set of optimization techniques such as 
vertical partitioning, horizontal partitioning, indexes, etc. 
He can use a single technique or combine several to get a 
better performance. Several selection algorithms are 
available for a given technique. Each algorithm is 
characterized by a set of parameters to adjust. For some 

techniques, several objects from the data warehouse are 
candidates (usually tables and attributes). To conduct the 
physical design task, the DWA faces make several choices 
related to: (1) optimization techniques, (2) selection mode, 
(3) selection algorithms and their parameters, and (4) tables 
and attributes candidates (Figure 1): 

 

 

1.1 Choice of optimization techniques 

If we explore the literature and commercial DBMS, we find 
a wide variety of optimization techniques that may be 
redundant or not. Redundant techniques require storage 
space and maintenance costs (materialized views, advanced 
indexes, vertical partitioning, etc.), while non-redundant 
techniques do not require storage or maintenance costs 
(horizontal fragmentation, parallel processing, etc.). To 
optimize queries defined on the data warehouse, the DWA 
can choose one or more optimization techniques among 
these two categories. This choice is often difficult because 
some techniques are beneficial for some queries and not for 
others. 
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1.2 Choice of selection mode 

With several optimization techniques, the DWA has two 
modes of selection: isolated selection and multiple 
selection. In isolated selection, he chose one technique that 
may be redundant if it has enough space and few updates, 
for example, or he may choose a non-redundant technique. 
The isolated selection has been widely studied 
[4,5,9,13,10], but it is often insufficient for a better 
optimization of the data warehouse. Multiple selection 
consist to select several techniques at once. It is mainly 
motivated by the strong similarities between optimization 
techniques. The major works in this category are mainly 
concentrated on the selection of materialized views and 
indexes [3,16,17] 

 

1.3 Choice and setting of selection algorithms 

Once the optimization techniques used are chosen, the 
DWA faces the problem of choice of their selection 
algorithms. For each selection mode, isolated or multiple, a 
wide choice of algorithms is possible. These algorithms are 

of various types, ranging from simple algorithms such as 
greedy algorithms to more complex algorithms such as 
algorithms based on linear programming, genetic 
algorithms, ant colonies, etc. Some algorithms have few 
parameters such as greedy algorithms while others have 
several parameters that must be configured for good 
performance. 

 

1.4 Choice of candidate attributes and tables 

The relational data warehouses are generally modeled by a 
star schema consists of a fact table and a set of dimension 
tables. For some techniques such as horizontal partitioning 
(HP), vertical partitioning and indexes, several tables and 
attributes are candidates to be used by these techniques. The 
DWA must choose in some cases a subset of tables and 
attributes among the initial set. This choice is often made to 
prune search space and reduce the complexity of the 
selection problem. 

 

 

 

Administrator 

Selection of optimization 
techniques 
 Views 
 Index 
 Horizontal Partitioning 
 Clustering 

Selection mode 
 Isolate 
 Multiple 

Selection Algorithms 
  Few parameters 
 Greedy 

 More parameters 
 Genetic algorithm 
 Simulated annealing 
 …. 

Parameters of selection 
algorithms 
Example: Genetic Algorithms 
 Number of chromosomes 
 Mutation rate 
 Crossover rate 

Selection of 
tables/attributes 

  

  

 

 
Which is 
better? 

 
Figure 1: Choices made by administrator 

 

As we have seen, the task of the DWA is becoming 
increasingly complex given the large number of choices to 
make, hence the need for development of advisor tools. 
These tools should assist the DWA to make the right 

choices for data warehouse optimization.  

This paper is organized into 6 sections. Section 2 presents a 
state of the art on the advisor tools developed to assist the 
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administrator in his optimization task. Section 3 presents 
the optimization techniques discussed in this paper and 
their interaction. Section 4 presents the general architecture 
of the tool that we develop. Section 5 is devoted to the 
presentation of our tool features applied to a data 
warehouse. Finally, Section 6 concludes the paper and 
presents some perspectives. 

 

2 STATE OF THE ART 

To assist the DWA in optimizing the data warehouse some 
tools have been developed. Most existing tools have been 
proposed by commercial DBMS in the context of self-
administration. Among these tools, we can cite Oracle SQL 
Access Advisor [1], DB2 Design Advisor [18] and Microsoft 
Database Tuning Advisor [2].  

SQL Access Advisor provides comprehensive advice on 
how to optimize the design of a scheme to maximize 
application performance. This tool is a wizard that 
automates some aspects of physical design and tuning1 
performed manually on Oracle databases. The tool analyzes 
the workload of queries and offers recommendations for 
creating new index if necessary, remove unused indexes, 
create new materialized views, etc. The recommendations 
generated are accompanied by a quantified assessment of 
the performance gains and scripts necessary to implement 
them.  

DB2 Design Advisor is a part of DB2 V8.2. It is an 
improvement of DB2 Index Advisor Tool which selects a set 
of indexes. DB2 Design Advisor optimizes a set of queries 
by proposing a set of recommendations. These 
recommendations concern four optimization techniques: 
indexes, materialized views, HP and clustering.  

Microsoft Database Tuning Advisor (DTA) is developed in 
Microsoft Research AutoAdmin project. DTA can provide 
integrated recommendations for indexes defined on tables, 
views, indexes defined on views and horizontal 
partitioning. It takes as input a set of data bases on a server, 
a workload of queries, optimization techniques to select and 
a set of constraints, such as storage cost for redundant 
techniques. It will output a set of recommendations for 
indexes, views and HP.  

Most of the tools that we have presented have been 
proposed in the context of self-administration of databases 
and are generally specific to a given DBMS. They are also 
characterized by the use of the query optimizer to evaluate 
the quality of selected techniques. This represents an 
                                                        
1The tuning is a set of activities used to optimize the performance 
of a database or data warehouse as a result of their evolution. 

additional task of the optimizer and can cause a 
deterioration of performance.  

In trying to automate the administration and tuning of 
databases and data warehouses, the authors of these tools 
seek to discharge the administrator of these two tasks. [12] 
Shows that a physical design developed without 
administrator intervention poses a problem of robustness. 
Optimization techniques generated can degrade 
performance instead of improving them. The algorithms 
used by these tools for the selection of optimization 
techniques are frozen and not accessible to the 
administrator. It is interesting to improve this toolkit by 
other tools for allowing more interactivity with the 
administrator. These tools should allow the administrator to 
customize his physical design and use his experience to 
improve the quality of selected optimization techniques. In 
this way, we propose OptAssist a tool for assisting the 
DWA in his data warehouse optimization task. 

By using OptAssist the DWA can choose optimization 
techniques, selection mode, used algorithms, parameters for 
each algorithm as well as tables and attributes considered 
for the generation of recommendations. Unlike most tools 
which provide only primary partitioning, OptAssist can 
recommend a primary and derived horizontal partitioning. It 
also allows multiple selections of HP and bitmap join 
indexes (BJI) to better optimize the data warehouse. The 
tool uses a cost model that we proposed in [8]. It supports 
multiple DBMS by exploiting the meta-base to collect all 
information and statistics needed for optimization.  

 

3 THE USED OPTIMIZATION TECHNIQUES 

Due to the large number of existing optimization 
techniques, OptAssist concentrates on three optimization 
techniques: (1) primary horizontal partitioning, (2) derived 
horizontal partitioning (both are non redundant techniques), 
and (3) bitmap join indexes (redundant technique). This 
choice is performed due to similarities between them. 
Primary horizontal partitioning allows a table to be 
decomposed into disjoint sets of rows using selection 
attributes of that table. This partitioning can supported 
using several modes: Range, List, Hash, Composite, etc. 
[15]. The derived partitioning allows the decomposition of 
a table based on attributes of another partitioned table(s). 
The derived partitioning of a table R based on the 
fragmentation schema of S is feasible, if and only if, there 
is a join link between R and S (R contains a foreigner key 
of S). It is similar to referential partitioning recently 
supported by ORACLE11G. Most of today’s commercial 
DBMSs include a DDL (data definition language) support 
for defining horizontal partitions of a table. Primary and 
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derived partitioning optimizes selections (prune partition) 
and joins operations (partition-wise joins). 

 

Example 1: For example, let dimension table TimeLevel be 
a list partitioned table using QuarterLevel attribute created 
as follows: 

 

CREATE TABLE TimeLevel(Tid VARCHAR2(12) NOT 
NULL, Year_Level NUMBER, Quarter_Level 
VARCHAR2(2), Month_Level NUMBER, PRIMARY 
KEY (Tid))  

PARTITION BY LIST(Quarter_Level)  

( PARTITION First_Quarter VALUES(’Q1’) 
TABLESPACE TL_TB1,  

PARTITION Second_Quarter VALUES(’Q2’) 
TABLESPACE TL_TB2,  

PARTITION Third_Quarter VALUES(’Q3’) 
TABLESPACE TL_TB3,  

PARTITION Fourth_Quarter VALUES(’Q4’) 
TABLESPACE TL_TB4) 

 

Then users can derive partition the fact table Actvars into 4 
fragments using the referential partitioning supported by 
ORACLE11G as follows: 

CREATE TABLE Actvars(Customer_Level 
VARCHAR2(12) NOT NULL, Product_Level 
VARCHAR2(12) NOT NULL, Channel_Level 
VARCHAR2(12) NOT NULL, Time_Level 
VARCHAR2(12) NOT NULL, Unitssold FLOAT, 
Dollarsales FLOAT, Dollarcost FLOAT,  

CONSTRAINT fk_Actvars_TimeLevel FOREIGN KEY 
(Time_Level) REFERENCES TimeLevel(Tid))  

 

PARTITION BY REFERENCE (fk_Actvars_TimeLevel) 
Bitmap join index is proposed to speed up join and 
selection operations. In its simplest form, it can be defined 
as a bitmap index on a table R based on column(s) of 
another table S, where S commonly joins with R in a 
specific way. 

 

Example 2: A bitmap join index between the fact table 
Actvars and dimension table TimeLevel based on the 
attribute Quarter Level is defined as follows: 

 

CREATE BITMAP INDEX 
Quarter_TimeLevel_Actvars_bjix  

ON Actvars (TimeLevel.Quarter_Level)  

FROM Actvars A, TimeLevel T  

Where A.Time_level=T.Tid 

 

Based on the two examples, we can easily identify 
similarities between horizontal partitioning and bitmap join 
indexes that we describe in the following section. 

In [18], the authors argued that primary horizontal 
partitioning and single table indexes weakly depend on each 
other. Their argumentation is based on the fact that complex 
queries tend to use hash joins more often. In their study, 
they did not consider multiple table indexes, such as BJI. 
For OLAP queries (such as COUNT(*) queries), these 
indexes are usually used instead of hash joins. We claim 
that derived horizontal partitioning and BJI are two 
dependent techniques - both optimize joins and selections 
and usually compete for the same resource representing 
selection attributes defined in queries. A major difference 
between these techniques is that BJI are suitable for 
selection attributes with a low cardinality such as Gender 
(called indexable attributes), but horizontal partitioning can 
be generated using any selection attribute (called 
fragmentation attributes). To show the nature of these 
interdependencies, we consider the following scenarios. Let 
FAC and IAC be the set of fragmentation and indexation 
attributes candidate for partitioning and indexing processes, 
respectively. 

 

 If (FAC∩IAC = φ), derived horizontal partitioning and 
bitmap join indexes weakly depend on each other, since 
they do not compete for the same selection attributes. 
DWA may partition the data warehouse using FAC and 
then select BJI on the fragmented schema using IAC. 

 
 If (FAC ∩ IAC ≠ φ) two cases may possible (i) the 

DWA could consider that these two techniques weakly 
depend on each other. This choice is not interesting for 
the following complexity reasons: selecting a 
fragmentation schema of a relational data warehouse is 
a hard problem [4]. Its complexity is proportional to the 
number of fragmentation attributes candidate [14]. The 
same remark goes for selecting BJI [7]. (ii) Instead of 
selecting these two techniques sequentially, it is better 
to select them using combined selection mode as 
follows: selecting derived horizontal partitioning using 
FAC and selecting BJI on (IAC−FA) set, where FA is 
the set of attributes participating in fragmenting the data 
warehouse. In this case, BJI strongly depend on 
horizontal partitioning. 
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Our optimization tool should take into account these 
interdependencies and gives DWA choices on choosing his 
favorite mode. 

 

4 ARCHITECTURE OF OPTASSIST 

OptAssist accepts as input a data warehouse schema, a 
workload of queries Q and a set of constraints (the 
maximum number of fragments, W, for HP and the quota of 
storage space, S, for BJI). It can fragment or indexing the 

data warehouse or both operations simultaneously. Our 
choice to use the HP and BJI is motivated by several 
similarities that we have identified between these two 
techniques in [8]. OptAssist consists of a set of modules 
assisting the DWA to make his optimization choices (see 
Figure 2): (1) meta-base querying module, (2) managing 
queries module, (3) HP selection module, (4) BJI selection 
module, (5) horizontal partitioning module, (6) indexing 
module and (7) query rewriting module.  

 

  

 
Figure 1: OptAssist architecture 

 

4.1 Meta-base Querying Module 

The meta-base querying module is a very important module 
that allows the tool to work with any type of DBMS. From 
a type of DBMS, user name and password the module 
allows to connect to that (an) account and collect some 
information from the meta-base. These information concern 
logical and physical levels of the data warehouse. The 
information of the logical level includes tables and 
attributes in these tables. The information of the physical 
level includes optimization techniques used and a set of 
statistics on tables and attributes of the data warehouse 
(number of tuples, cardinaly, etc.).  

 

4.2 Managing Queries Module  

This module enables the DWA to help define the workload 
of queries (Q) on which the optimization is based. The 
module allows manual editing of a query or import from 
external files. It may also manage the workload, giving the 

possibility to add, delete or update queries. This module 
integrates parser that identifies syntax errors as well as 
tables and attributes used by each query.  

 

4.3 Horizontal Partitioning Selection Module 
(HPSM) 

HPSM requires as input a schema of data warehouse, a 
workload and a threshold W representing the maximum 
number of fragments that the administrator can manage. 
Using these data, HPSM selects a partitioning schema (PS) 
to minimize the cost of the workload and generating a 
number of fragments not exceeding W. In [4], we 
conducted a complexity study of the HP selection problem 
in the context of relational data warehouses, and we proved 
that it is NP-complete. Therefore, to find a solution to this 
problem, we proposed three heuristic algorithms: Genetic 
Algorithm (GA), Simulated Annealing algorithm (SA) and 
Hill Climbing algorithm (HC) [4,6]. These three algorithms 
are supported in the HPSM.  
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4.4 BJI Selection Module 

This module requires as input a schema of the data 
warehouse, a workload Q and storage space S allocated to 
BJI. It selects a configuration of BJI (CBJI) to minimize the 
workload execution time respecting the constraint 
Size(CBJI) <= S. The module supports two greedy 
algorithms that we proposed in [8] and an algorithm based 
on a technique of data mining (Closed frequent Itemsets) 
proposed by Aouiche et al. [3].  

 

4.5 Horizontal Partitioning Module (HPM) 

HPM fragments physically the data warehouse using 
partitioning schema obtained from HPSM. From the 
partitioning schema, HPM determines the dimension tables 
to fragment by horizontal primary partitioning and 
attributes used to perform this fragmentation. The module 
can then fragment the fact table by horizontal derived 
partitioning using fragments of dimension tables. In [8] we 
identified two problems: (1) most DBMS do not support the 
primary HP on three attributes or more and (2) derived HP 
is not supported in the case of two dimension tables or 
more. We have proposed a technique to solve these two 
problems. This technique is supported by the HPM. This 
generates all scripts that allow partitioning fact and 
dimension table as the input partitioning schema PS.  

 

4.6 Indexing Module 

The indexing module is responsible for the creation of BJI 
selected by the BJI selection module. This module 
generates SQL queries to create BJI on the data warehouse. 

  

4.7 Query Rewriting Module 

Once the optimization techniques physically created on the 
data warehouse (HP and/or BJI), a step of rewriting queries 
is necessary. Two types of rewrites are performed: 
rewriting for BJI and rewriting for HP. Rewriting for BJI is 
to add Hints in the SELECT clause of queries to force the 
use of created BJI2. Rewriting for HP is to identify valid 
fragments for each query, rewrite the query on each of these 
fragments and finally performing union of the obtained 
results.  

 

                                                        
2 The hints INDEX in a query force using one or more indexes to 
execute this query. 

5 FEATURES OF OPTASSIST 

We present in this section the main features of OptAssist 
through its use on a real data warehouse generated from the 
APB-1 Benchmark [11]. The star schema that we have 
reached from this Benchmark consists of a fact table 
Actvars (24 786 000 tuples) and four dimension tables, 
Prodlevel ( 9 000 tuples), Custlevel (900  tuples), Timelevel 
(24 tuples) and Chanlevel (9 tuples).  

To assist the DWA in optimization of the data warehouse, 
OptAssist performs four main functions: visualization of 
data warehouse current status, preparing optimization, 
partitioning the data warehouse and indexing the data 
warehouse (fragmented or not). We present below the four 
features. 

 

5.1 Visualization of data warehouse current status 

Displaying the status of the data warehouse allows DWA to 
know the data warehouse schema, dimension tables, fact 
table and some statistics on these tables. OptAssiste can 
also display optimization techniques already created on the 
data warehouse. All this information is collected through 
the meta-base querying module. This visualization allows 
the administrator to have an overall view of his data 
warehouse before beginning the optimization process. 
Figure 3 (a) shows an example of visualization where 
tables, attributes and optimization techniques created are 
displayed. Figure 3 (b) shows a set of statistics collected 
about some objects in the data warehouse.  

 

 

5.2 Preparing the optimization 

The preparation of optimization is to collect the information 
necessary to perform this optimization. It concerns the 
preparation of the work load Q, the choice of selection 
mode and definition of some physical parameters. Figure 4 
shows the interface of managing the workload of queries 
where DWA can add, edit or delete a query and check its 
syntax. OptAssist supports two modes of selection: isolated 
and multiple. In the isolated mode, the DWA can use 
horizontal partitioning only (HPONLY) or BJI only 
(BJIONLY) to optimize his data warehouse. Multiple 
selection mode is to use both techniques HP and BJI. First, 
the data warehouse is fragmented into a set of fragments, 
then these fragments are indexed. OptAssist allows the 
DWA to fixe some physical parameters such as buffer size 
and page system size.  
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Figure 3: (a) Visualization of data warehouse state (b) 

Visualization of statistics 

 

 

 
Figure 4: Workload managing interface 

5.3 The partitioning of the data warehouse 

The partitioning of the warehouse is to fragment the 
dimension tables by the primary HP and the fact table by 
derived HP. The DWA begins by choosing the maximum 
number of fragments (W) then chooses whether he wants a 
personalized fragmentation or not. If he chooses non-
personalized fragmentation then OptAssist partitions the 
data warehouse using all candidate attributes and tables and 
a default partitioning algorithm. Personalized partitioning 
offers more options to DWA in the selection process. He 
can choose dimension tables and attributes involved in the 
partitioning process. He must choose the partitioning 
algorithm (GA, SA or HC) and set its parameters. Figure 5 
represents the algorithms choice and setting interface. For 
each selected algorithm, OptAssist activates the 
corresponding parameters and allows the DWA to change 
theses parameters. To illustrate the personalized 
partitioning we consider the case where the EDA chose to 
eliminate specific attributes and tables in the process of 
fragmentation. Figure 6 and 7 represent respectively the 
non-personalized and personalized partitioning interfaces. If 
the DWA chose to personalize the partitioning process, then 
OptAssist gives it the possibility to choose candidates 
dimension tables and attributes. In Figure 7, the DWA has 
eliminated the table CustLevel, one attribute of the table 
TimeLevel and three attributes of the table ProdLevel from 
the partitioning process. After selecting tables and 
attributes, the DWA selects the simulated annealing 
algorithm, set W to 100 and starts the selection. The 
partitioning schema obtained with this personalization 
generates 72 fragments with about 8,8 % of cost reduction 
compared to non-personalized partitioning.  

 

 
Figure 5: Algorithms selection and setting 
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Figure 6: Non personalized partitioning 

 

Once the partitioning schema of the data warehouse is 
selected by the HPSM, the DWA may visualize a 
recommendation proposed by OpAssist. This 
recommendation provide more information: number of 
generated fragments, fragmented dimension tables, 
attributes used to partition these tables, an estimated 
number of input-output necessary to execute the workload, 
the number of fragments of each dimension table, the gain 
performance obtained by fragmentation (compared to 
unfragmented schema), etc. Figure 8 shows the interface 
displaying attributes used to partition the data warehouse 
(four attributes among twelve were used: Line _level, 
Year_level, Month_level and All _level). If the DWA is not 
satisfied with this recommendation, he may return to the 
previous steps and change the various settings (reselect 
attributes and tables, or algorithms, parameters, etc..). The 
back is essential in the physical design phase in order to 
improve optimization. When the DWA is satisfied, he may 
ask OptAssist to generate fragmentation scripts and rewrite 
queries.  

 

 
Figure 7: Personalization of partitioning 

To physically fragmenting the data warehouse, the DWA 
executes the generated scripts; the unfragmented data 
warehouse will be replaced by the fragmented data 
warehouse.  

 

 

 
Figure 8: Attributes used to partition the data warehouse 

 

5.4 Indexing the warehouse 

OptAssist supports two modes of indexing the data 
warehouse: isolated (ONLYBJI) and multiple (HP&BJI). In 
the case of ONLYBJI mode, the DWA must first choose the 
candidate indexable attributes and storage space S. As with 
HP, two types of indexing are possible: non-personalized 
indexing and personalized indexing. The BJI selection 
module supports three selection algorithms, two greedy 
algorithms (one for selecting single attribute BJI and the 
second for selecting multiple attributes BJI) and a data 
mining based algorithm. OptAssist generates a 
recommendation that provides some information: BJI 
selected, percentage of cost reduction, indexed tables and 
attributes, storage cost, etc. To illustrate this, we believe 
that the DWA chose to make a non-personalized indexing 
with a space storage of 50 MB.  Figure 9 show interface 
dedicated to the recommendations generated after BJI 
selection. Among the twelve indexable attributes, five 
attributes have been used to create five BJI occupying 48 
MB.  
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Figure 9: BJI recommendations in ONLYBJI selection mode 

 

 
Figure 10: BJI recommendations in HP&BJI selection mode 

 

Indexing in FH&BJI mode is to index the partitioned data 
warehouse. The difference between ONLYBJI and FH&BJI 
indexation modes is the choice of candidate indexable 
attributes and the set of queries used to optimize the data 
warehouse. In ONLYBJI mode, all candidates indexable 
attributes and all queries are used by the selection 
algorithms. In FH&BJI mode, candidate indexable 
attributes are chosen among indexable attributes unused to 
partition the data warehouse. The queries used by selection 
algorithms in this mode are all queries that do not benefit 
from partitioning. To illustrate this indexing mode, consider 
that the DWA seeks to index the partitioned data 
warehouse. After partitioning, OptAssist disables 
automatically attributes used to partition the data 
warehouse, since they are not used to index the data 

warehouse. The DWA chooses the greedy algorithm, a 
storage space of 50 MB and run the selection algorithm. 
Figure 10 shows the indexing recommendations after BJI 
selection. We find more information as the number of 
queries do not benefit from the fragmentation, indexed 
attributes, storage cost of selected BJI, the cost of queries 
before and after indexing, etc. In the same way as for the 
fragmentation, if DWA is satisfied with recommendations, 
he asks OptAssist to generate indexing scripts, otherwise he 
can go back for other choices.  

 

6 CONCLUSION 

Data warehouse physical design task has become a major 
issue. This is due to the characteristics of data warehouses: 
large volume, complexity of OLAP queries, the 
requirements of reasonable response time and management 
changes. In this environment, we have highlighted the 
difficulties that an administrator might encounter during 
optimization. These difficulties are numerous, because they 
involve multiple levels: choice of optimization techniques 
for all relevant queries to optimize, choice of selection 
mode, choice of algorithms and their parameters. Given 
these difficulties, we have identified the need to develop an 
advisor tool assisting DWA to make the right choices for 
optimization. We proposed OptAssist tool, offering three 
optimization techniques: primary horizontal partitioning, 
derived horizontal partitioning and bitmap join indexes. It 
can select these techniques in isolated or multiple modes 
and allows the DWA to select different algorithms and their 
parameters. Another particularity of OptAssist is that it 
offers a personalized and non-personalized optimization. It 
will be interesting to extend our tool by considering other 
optimization techniques, like materialized views, parallel 
processing, clustering, etc. Another possible extension is to 
consider other selection algorithms like ant colonies, taboo 
search, etc. 
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