
Courrier du Savoir – N°14, Novembre 2012, pp.93-102

Université Mohamed Khider – Biskra, Algérie, 2012

OPTASSIST: A RELATIONAL DATA WAREHOUSE OPTIMIZATION
ADVISOR

KAMEL BOUKHALFA(1), ZIANI BENAMEUR(3), LADJEL BELLATRECHE(2), ZAIA ALIMAZIGHI (1)
 (1) USTHB-Algiers, Algeria boukhalk@ensma.fr
 (2) LISI/ENSMA Poitiers-France bellatreche@ensma.fr
 (3) Laghouat University – Algeria bziani@mail.lagh-univ.dz

ABSTRACT

Data warehouses store large amounts of data usually accessed by complex decision making queries with many selection, join
and aggregation operations. To optimize the performance of the data warehouse, the administrator has to make a physical
design. During physical design phase, the Data Warehouse Administrator has to select some optimization techniques to speed
up queries. He must make many choices as optimization techniques to perform, their selection algorithms, parameters of these
algorithms and the attributes and tables used by some of these techniques. We describe in this paper the nature of the
difficulties encountered by the administrator during physical design. We subsequently present a tool which helps the
administrator to make the right choices for optimization. We demonstrate the interactive use of this tool using a relational data
warehouse created and populated from the APB-1 Benchmark.

KEY WORDS: Optimization, Data Warehouse, physical design, horizontal partitioning, Bitmap join index

1 INTRODUCTION

The main characteristics of data warehouses are their large
size and complexity of OLAP (On-Line Analytical
Processing) queries due to the operations of selection, join
and aggregation. These characteristics have made the task
of administering increasingly complex. Traditionally, in
databases business applications like OLTP (On-Line
Transaction Processing), the task of an administrator was
mainly concentrated on the user management and use of a
limited number of optimization techniques as indexes and
views.

Optimizing the execution time of queries is a key
requirement of data warehouse users. To satisfy this
requirement, the data warehouse administrator (DWA) must
perform a physical design that is crucial to ensure good
performance. The physical design must determinate how a
query should be run efficiently on the data warehouse.
Thus, the DWA has a set of optimization techniques such as
vertical partitioning, horizontal partitioning, indexes, etc.
He can use a single technique or combine several to get a
better performance. Several selection algorithms are
available for a given technique. Each algorithm is
characterized by a set of parameters to adjust. For some

techniques, several objects from the data warehouse are
candidates (usually tables and attributes). To conduct the
physical design task, the DWA faces make several choices
related to: (1) optimization techniques, (2) selection mode,
(3) selection algorithms and their parameters, and (4) tables
and attributes candidates (Figure 1):

1.1 Choice of optimization techniques

If we explore the literature and commercial DBMS, we find
a wide variety of optimization techniques that may be
redundant or not. Redundant techniques require storage
space and maintenance costs (materialized views, advanced
indexes, vertical partitioning, etc.), while non-redundant
techniques do not require storage or maintenance costs
(horizontal fragmentation, parallel processing, etc.). To
optimize queries defined on the data warehouse, the DWA
can choose one or more optimization techniques among
these two categories. This choice is often difficult because
some techniques are beneficial for some queries and not for
others.

K.BOUKHALFA & al.

 94

1.2 Choice of selection mode

With several optimization techniques, the DWA has two
modes of selection: isolated selection and multiple
selection. In isolated selection, he chose one technique that
may be redundant if it has enough space and few updates,
for example, or he may choose a non-redundant technique.
The isolated selection has been widely studied
[4,5,9,13,10], but it is often insufficient for a better
optimization of the data warehouse. Multiple selection
consist to select several techniques at once. It is mainly
motivated by the strong similarities between optimization
techniques. The major works in this category are mainly
concentrated on the selection of materialized views and
indexes [3,16,17]

1.3 Choice and setting of selection algorithms

Once the optimization techniques used are chosen, the
DWA faces the problem of choice of their selection
algorithms. For each selection mode, isolated or multiple, a
wide choice of algorithms is possible. These algorithms are

of various types, ranging from simple algorithms such as
greedy algorithms to more complex algorithms such as
algorithms based on linear programming, genetic
algorithms, ant colonies, etc. Some algorithms have few
parameters such as greedy algorithms while others have
several parameters that must be configured for good
performance.

1.4 Choice of candidate attributes and tables

The relational data warehouses are generally modeled by a
star schema consists of a fact table and a set of dimension
tables. For some techniques such as horizontal partitioning
(HP), vertical partitioning and indexes, several tables and
attributes are candidates to be used by these techniques. The
DWA must choose in some cases a subset of tables and
attributes among the initial set. This choice is often made to
prune search space and reduce the complexity of the
selection problem.

Administrator

Selection of optimization
techniques
 Views
 Index
 Horizontal Partitioning
 Clustering

Selection mode
 Isolate
 Multiple

Selection Algorithms
 Few parameters
 Greedy

 More parameters
 Genetic algorithm
 Simulated annealing
 ….

Parameters of selection
algorithms
Example: Genetic Algorithms
 Number of chromosomes
 Mutation rate
 Crossover rate

Selection of
tables/attributes

 

 



Which is
better?

Figure 1: Choices made by administrator

As we have seen, the task of the DWA is becoming
increasingly complex given the large number of choices to
make, hence the need for development of advisor tools.
These tools should assist the DWA to make the right

choices for data warehouse optimization.

This paper is organized into 6 sections. Section 2 presents a
state of the art on the advisor tools developed to assist the

Opt assist: a relational data warehouse optimization advisor

 95

administrator in his optimization task. Section 3 presents
the optimization techniques discussed in this paper and
their interaction. Section 4 presents the general architecture
of the tool that we develop. Section 5 is devoted to the
presentation of our tool features applied to a data
warehouse. Finally, Section 6 concludes the paper and
presents some perspectives.

2 STATE OF THE ART

To assist the DWA in optimizing the data warehouse some
tools have been developed. Most existing tools have been
proposed by commercial DBMS in the context of self-
administration. Among these tools, we can cite Oracle SQL
Access Advisor [1], DB2 Design Advisor [18] and Microsoft
Database Tuning Advisor [2].

SQL Access Advisor provides comprehensive advice on
how to optimize the design of a scheme to maximize
application performance. This tool is a wizard that
automates some aspects of physical design and tuning1
performed manually on Oracle databases. The tool analyzes
the workload of queries and offers recommendations for
creating new index if necessary, remove unused indexes,
create new materialized views, etc. The recommendations
generated are accompanied by a quantified assessment of
the performance gains and scripts necessary to implement
them.

DB2 Design Advisor is a part of DB2 V8.2. It is an
improvement of DB2 Index Advisor Tool which selects a set
of indexes. DB2 Design Advisor optimizes a set of queries
by proposing a set of recommendations. These
recommendations concern four optimization techniques:
indexes, materialized views, HP and clustering.

Microsoft Database Tuning Advisor (DTA) is developed in
Microsoft Research AutoAdmin project. DTA can provide
integrated recommendations for indexes defined on tables,
views, indexes defined on views and horizontal
partitioning. It takes as input a set of data bases on a server,
a workload of queries, optimization techniques to select and
a set of constraints, such as storage cost for redundant
techniques. It will output a set of recommendations for
indexes, views and HP.

Most of the tools that we have presented have been
proposed in the context of self-administration of databases
and are generally specific to a given DBMS. They are also
characterized by the use of the query optimizer to evaluate
the quality of selected techniques. This represents an

1The tuning is a set of activities used to optimize the performance
of a database or data warehouse as a result of their evolution.

additional task of the optimizer and can cause a
deterioration of performance.

In trying to automate the administration and tuning of
databases and data warehouses, the authors of these tools
seek to discharge the administrator of these two tasks. [12]
Shows that a physical design developed without
administrator intervention poses a problem of robustness.
Optimization techniques generated can degrade
performance instead of improving them. The algorithms
used by these tools for the selection of optimization
techniques are frozen and not accessible to the
administrator. It is interesting to improve this toolkit by
other tools for allowing more interactivity with the
administrator. These tools should allow the administrator to
customize his physical design and use his experience to
improve the quality of selected optimization techniques. In
this way, we propose OptAssist a tool for assisting the
DWA in his data warehouse optimization task.

By using OptAssist the DWA can choose optimization
techniques, selection mode, used algorithms, parameters for
each algorithm as well as tables and attributes considered
for the generation of recommendations. Unlike most tools
which provide only primary partitioning, OptAssist can
recommend a primary and derived horizontal partitioning. It
also allows multiple selections of HP and bitmap join
indexes (BJI) to better optimize the data warehouse. The
tool uses a cost model that we proposed in [8]. It supports
multiple DBMS by exploiting the meta-base to collect all
information and statistics needed for optimization.

3 THE USED OPTIMIZATION TECHNIQUES

Due to the large number of existing optimization
techniques, OptAssist concentrates on three optimization
techniques: (1) primary horizontal partitioning, (2) derived
horizontal partitioning (both are non redundant techniques),
and (3) bitmap join indexes (redundant technique). This
choice is performed due to similarities between them.
Primary horizontal partitioning allows a table to be
decomposed into disjoint sets of rows using selection
attributes of that table. This partitioning can supported
using several modes: Range, List, Hash, Composite, etc.
[15]. The derived partitioning allows the decomposition of
a table based on attributes of another partitioned table(s).
The derived partitioning of a table R based on the
fragmentation schema of S is feasible, if and only if, there
is a join link between R and S (R contains a foreigner key
of S). It is similar to referential partitioning recently
supported by ORACLE11G. Most of today’s commercial
DBMSs include a DDL (data definition language) support
for defining horizontal partitions of a table. Primary and

K.BOUKHALFA & al.

 96

derived partitioning optimizes selections (prune partition)
and joins operations (partition-wise joins).

Example 1: For example, let dimension table TimeLevel be
a list partitioned table using QuarterLevel attribute created
as follows:

CREATE TABLE TimeLevel(Tid VARCHAR2(12) NOT
NULL, Year_Level NUMBER, Quarter_Level
VARCHAR2(2), Month_Level NUMBER, PRIMARY
KEY (Tid))

PARTITION BY LIST(Quarter_Level)

(PARTITION First_Quarter VALUES(’Q1’)
TABLESPACE TL_TB1,

PARTITION Second_Quarter VALUES(’Q2’)
TABLESPACE TL_TB2,

PARTITION Third_Quarter VALUES(’Q3’)
TABLESPACE TL_TB3,

PARTITION Fourth_Quarter VALUES(’Q4’)
TABLESPACE TL_TB4)

Then users can derive partition the fact table Actvars into 4
fragments using the referential partitioning supported by
ORACLE11G as follows:

CREATE TABLE Actvars(Customer_Level
VARCHAR2(12) NOT NULL, Product_Level
VARCHAR2(12) NOT NULL, Channel_Level
VARCHAR2(12) NOT NULL, Time_Level
VARCHAR2(12) NOT NULL, Unitssold FLOAT,
Dollarsales FLOAT, Dollarcost FLOAT,

CONSTRAINT fk_Actvars_TimeLevel FOREIGN KEY
(Time_Level) REFERENCES TimeLevel(Tid))

PARTITION BY REFERENCE (fk_Actvars_TimeLevel)
Bitmap join index is proposed to speed up join and
selection operations. In its simplest form, it can be defined
as a bitmap index on a table R based on column(s) of
another table S, where S commonly joins with R in a
specific way.

Example 2: A bitmap join index between the fact table
Actvars and dimension table TimeLevel based on the
attribute Quarter Level is defined as follows:

CREATE BITMAP INDEX
Quarter_TimeLevel_Actvars_bjix

ON Actvars (TimeLevel.Quarter_Level)

FROM Actvars A, TimeLevel T

Where A.Time_level=T.Tid

Based on the two examples, we can easily identify
similarities between horizontal partitioning and bitmap join
indexes that we describe in the following section.

In [18], the authors argued that primary horizontal
partitioning and single table indexes weakly depend on each
other. Their argumentation is based on the fact that complex
queries tend to use hash joins more often. In their study,
they did not consider multiple table indexes, such as BJI.
For OLAP queries (such as COUNT(*) queries), these
indexes are usually used instead of hash joins. We claim
that derived horizontal partitioning and BJI are two
dependent techniques - both optimize joins and selections
and usually compete for the same resource representing
selection attributes defined in queries. A major difference
between these techniques is that BJI are suitable for
selection attributes with a low cardinality such as Gender
(called indexable attributes), but horizontal partitioning can
be generated using any selection attribute (called
fragmentation attributes). To show the nature of these
interdependencies, we consider the following scenarios. Let
FAC and IAC be the set of fragmentation and indexation
attributes candidate for partitioning and indexing processes,
respectively.

 If (FAC∩IAC = φ), derived horizontal partitioning and
bitmap join indexes weakly depend on each other, since
they do not compete for the same selection attributes.
DWA may partition the data warehouse using FAC and
then select BJI on the fragmented schema using IAC.

 If (FAC ∩ IAC ≠ φ) two cases may possible (i) the

DWA could consider that these two techniques weakly
depend on each other. This choice is not interesting for
the following complexity reasons: selecting a
fragmentation schema of a relational data warehouse is
a hard problem [4]. Its complexity is proportional to the
number of fragmentation attributes candidate [14]. The
same remark goes for selecting BJI [7]. (ii) Instead of
selecting these two techniques sequentially, it is better
to select them using combined selection mode as
follows: selecting derived horizontal partitioning using
FAC and selecting BJI on (IAC−FA) set, where FA is
the set of attributes participating in fragmenting the data
warehouse. In this case, BJI strongly depend on
horizontal partitioning.

Opt assist: a relational data warehouse optimization advisor

 97

Our optimization tool should take into account these
interdependencies and gives DWA choices on choosing his
favorite mode.

4 ARCHITECTURE OF OPTASSIST

OptAssist accepts as input a data warehouse schema, a
workload of queries Q and a set of constraints (the
maximum number of fragments, W, for HP and the quota of
storage space, S, for BJI). It can fragment or indexing the

data warehouse or both operations simultaneously. Our
choice to use the HP and BJI is motivated by several
similarities that we have identified between these two
techniques in [8]. OptAssist consists of a set of modules
assisting the DWA to make his optimization choices (see
Figure 2): (1) meta-base querying module, (2) managing
queries module, (3) HP selection module, (4) BJI selection
module, (5) horizontal partitioning module, (6) indexing
module and (7) query rewriting module.

Figure 1: OptAssist architecture

4.1 Meta-base Querying Module

The meta-base querying module is a very important module
that allows the tool to work with any type of DBMS. From
a type of DBMS, user name and password the module
allows to connect to that (an) account and collect some
information from the meta-base. These information concern
logical and physical levels of the data warehouse. The
information of the logical level includes tables and
attributes in these tables. The information of the physical
level includes optimization techniques used and a set of
statistics on tables and attributes of the data warehouse
(number of tuples, cardinaly, etc.).

4.2 Managing Queries Module

This module enables the DWA to help define the workload
of queries (Q) on which the optimization is based. The
module allows manual editing of a query or import from
external files. It may also manage the workload, giving the

possibility to add, delete or update queries. This module
integrates parser that identifies syntax errors as well as
tables and attributes used by each query.

4.3 Horizontal Partitioning Selection Module
(HPSM)

HPSM requires as input a schema of data warehouse, a
workload and a threshold W representing the maximum
number of fragments that the administrator can manage.
Using these data, HPSM selects a partitioning schema (PS)
to minimize the cost of the workload and generating a
number of fragments not exceeding W. In [4], we
conducted a complexity study of the HP selection problem
in the context of relational data warehouses, and we proved
that it is NP-complete. Therefore, to find a solution to this
problem, we proposed three heuristic algorithms: Genetic
Algorithm (GA), Simulated Annealing algorithm (SA) and
Hill Climbing algorithm (HC) [4,6]. These three algorithms
are supported in the HPSM.

K.BOUKHALFA & al.

 98

4.4 BJI Selection Module

This module requires as input a schema of the data
warehouse, a workload Q and storage space S allocated to
BJI. It selects a configuration of BJI (CBJI) to minimize the
workload execution time respecting the constraint
Size(CBJI) <= S. The module supports two greedy
algorithms that we proposed in [8] and an algorithm based
on a technique of data mining (Closed frequent Itemsets)
proposed by Aouiche et al. [3].

4.5 Horizontal Partitioning Module (HPM)

HPM fragments physically the data warehouse using
partitioning schema obtained from HPSM. From the
partitioning schema, HPM determines the dimension tables
to fragment by horizontal primary partitioning and
attributes used to perform this fragmentation. The module
can then fragment the fact table by horizontal derived
partitioning using fragments of dimension tables. In [8] we
identified two problems: (1) most DBMS do not support the
primary HP on three attributes or more and (2) derived HP
is not supported in the case of two dimension tables or
more. We have proposed a technique to solve these two
problems. This technique is supported by the HPM. This
generates all scripts that allow partitioning fact and
dimension table as the input partitioning schema PS.

4.6 Indexing Module

The indexing module is responsible for the creation of BJI
selected by the BJI selection module. This module
generates SQL queries to create BJI on the data warehouse.

4.7 Query Rewriting Module

Once the optimization techniques physically created on the
data warehouse (HP and/or BJI), a step of rewriting queries
is necessary. Two types of rewrites are performed:
rewriting for BJI and rewriting for HP. Rewriting for BJI is
to add Hints in the SELECT clause of queries to force the
use of created BJI2. Rewriting for HP is to identify valid
fragments for each query, rewrite the query on each of these
fragments and finally performing union of the obtained
results.

2 The hints INDEX in a query force using one or more indexes to
execute this query.

5 FEATURES OF OPTASSIST

We present in this section the main features of OptAssist
through its use on a real data warehouse generated from the
APB-1 Benchmark [11]. The star schema that we have
reached from this Benchmark consists of a fact table
Actvars (24 786 000 tuples) and four dimension tables,
Prodlevel (9 000 tuples), Custlevel (900 tuples), Timelevel
(24 tuples) and Chanlevel (9 tuples).

To assist the DWA in optimization of the data warehouse,
OptAssist performs four main functions: visualization of
data warehouse current status, preparing optimization,
partitioning the data warehouse and indexing the data
warehouse (fragmented or not). We present below the four
features.

5.1 Visualization of data warehouse current status

Displaying the status of the data warehouse allows DWA to
know the data warehouse schema, dimension tables, fact
table and some statistics on these tables. OptAssiste can
also display optimization techniques already created on the
data warehouse. All this information is collected through
the meta-base querying module. This visualization allows
the administrator to have an overall view of his data
warehouse before beginning the optimization process.
Figure 3 (a) shows an example of visualization where
tables, attributes and optimization techniques created are
displayed. Figure 3 (b) shows a set of statistics collected
about some objects in the data warehouse.

5.2 Preparing the optimization

The preparation of optimization is to collect the information
necessary to perform this optimization. It concerns the
preparation of the work load Q, the choice of selection
mode and definition of some physical parameters. Figure 4
shows the interface of managing the workload of queries
where DWA can add, edit or delete a query and check its
syntax. OptAssist supports two modes of selection: isolated
and multiple. In the isolated mode, the DWA can use
horizontal partitioning only (HPONLY) or BJI only
(BJIONLY) to optimize his data warehouse. Multiple
selection mode is to use both techniques HP and BJI. First,
the data warehouse is fragmented into a set of fragments,
then these fragments are indexed. OptAssist allows the
DWA to fixe some physical parameters such as buffer size
and page system size.

Opt assist: a relational data warehouse optimization advisor

 99

Figure 3: (a) Visualization of data warehouse state (b)

Visualization of statistics

Figure 4: Workload managing interface

5.3 The partitioning of the data warehouse

The partitioning of the warehouse is to fragment the
dimension tables by the primary HP and the fact table by
derived HP. The DWA begins by choosing the maximum
number of fragments (W) then chooses whether he wants a
personalized fragmentation or not. If he chooses non-
personalized fragmentation then OptAssist partitions the
data warehouse using all candidate attributes and tables and
a default partitioning algorithm. Personalized partitioning
offers more options to DWA in the selection process. He
can choose dimension tables and attributes involved in the
partitioning process. He must choose the partitioning
algorithm (GA, SA or HC) and set its parameters. Figure 5
represents the algorithms choice and setting interface. For
each selected algorithm, OptAssist activates the
corresponding parameters and allows the DWA to change
theses parameters. To illustrate the personalized
partitioning we consider the case where the EDA chose to
eliminate specific attributes and tables in the process of
fragmentation. Figure 6 and 7 represent respectively the
non-personalized and personalized partitioning interfaces. If
the DWA chose to personalize the partitioning process, then
OptAssist gives it the possibility to choose candidates
dimension tables and attributes. In Figure 7, the DWA has
eliminated the table CustLevel, one attribute of the table
TimeLevel and three attributes of the table ProdLevel from
the partitioning process. After selecting tables and
attributes, the DWA selects the simulated annealing
algorithm, set W to 100 and starts the selection. The
partitioning schema obtained with this personalization
generates 72 fragments with about 8,8 % of cost reduction
compared to non-personalized partitioning.

Figure 5: Algorithms selection and setting

K.BOUKHALFA & al.

 100

Figure 6: Non personalized partitioning

Once the partitioning schema of the data warehouse is
selected by the HPSM, the DWA may visualize a
recommendation proposed by OpAssist. This
recommendation provide more information: number of
generated fragments, fragmented dimension tables,
attributes used to partition these tables, an estimated
number of input-output necessary to execute the workload,
the number of fragments of each dimension table, the gain
performance obtained by fragmentation (compared to
unfragmented schema), etc. Figure 8 shows the interface
displaying attributes used to partition the data warehouse
(four attributes among twelve were used: Line _level,
Year_level, Month_level and All _level). If the DWA is not
satisfied with this recommendation, he may return to the
previous steps and change the various settings (reselect
attributes and tables, or algorithms, parameters, etc..). The
back is essential in the physical design phase in order to
improve optimization. When the DWA is satisfied, he may
ask OptAssist to generate fragmentation scripts and rewrite
queries.

Figure 7: Personalization of partitioning

To physically fragmenting the data warehouse, the DWA
executes the generated scripts; the unfragmented data
warehouse will be replaced by the fragmented data
warehouse.

Figure 8: Attributes used to partition the data warehouse

5.4 Indexing the warehouse

OptAssist supports two modes of indexing the data
warehouse: isolated (ONLYBJI) and multiple (HP&BJI). In
the case of ONLYBJI mode, the DWA must first choose the
candidate indexable attributes and storage space S. As with
HP, two types of indexing are possible: non-personalized
indexing and personalized indexing. The BJI selection
module supports three selection algorithms, two greedy
algorithms (one for selecting single attribute BJI and the
second for selecting multiple attributes BJI) and a data
mining based algorithm. OptAssist generates a
recommendation that provides some information: BJI
selected, percentage of cost reduction, indexed tables and
attributes, storage cost, etc. To illustrate this, we believe
that the DWA chose to make a non-personalized indexing
with a space storage of 50 MB. Figure 9 show interface
dedicated to the recommendations generated after BJI
selection. Among the twelve indexable attributes, five
attributes have been used to create five BJI occupying 48
MB.

Opt assist: a relational data warehouse optimization advisor

 101

Figure 9: BJI recommendations in ONLYBJI selection mode

Figure 10: BJI recommendations in HP&BJI selection mode

Indexing in FH&BJI mode is to index the partitioned data
warehouse. The difference between ONLYBJI and FH&BJI
indexation modes is the choice of candidate indexable
attributes and the set of queries used to optimize the data
warehouse. In ONLYBJI mode, all candidates indexable
attributes and all queries are used by the selection
algorithms. In FH&BJI mode, candidate indexable
attributes are chosen among indexable attributes unused to
partition the data warehouse. The queries used by selection
algorithms in this mode are all queries that do not benefit
from partitioning. To illustrate this indexing mode, consider
that the DWA seeks to index the partitioned data
warehouse. After partitioning, OptAssist disables
automatically attributes used to partition the data
warehouse, since they are not used to index the data

warehouse. The DWA chooses the greedy algorithm, a
storage space of 50 MB and run the selection algorithm.
Figure 10 shows the indexing recommendations after BJI
selection. We find more information as the number of
queries do not benefit from the fragmentation, indexed
attributes, storage cost of selected BJI, the cost of queries
before and after indexing, etc. In the same way as for the
fragmentation, if DWA is satisfied with recommendations,
he asks OptAssist to generate indexing scripts, otherwise he
can go back for other choices.

6 CONCLUSION

Data warehouse physical design task has become a major
issue. This is due to the characteristics of data warehouses:
large volume, complexity of OLAP queries, the
requirements of reasonable response time and management
changes. In this environment, we have highlighted the
difficulties that an administrator might encounter during
optimization. These difficulties are numerous, because they
involve multiple levels: choice of optimization techniques
for all relevant queries to optimize, choice of selection
mode, choice of algorithms and their parameters. Given
these difficulties, we have identified the need to develop an
advisor tool assisting DWA to make the right choices for
optimization. We proposed OptAssist tool, offering three
optimization techniques: primary horizontal partitioning,
derived horizontal partitioning and bitmap join indexes. It
can select these techniques in isolated or multiple modes
and allows the DWA to select different algorithms and their
parameters. Another particularity of OptAssist is that it
offers a personalized and non-personalized optimization. It
will be interesting to extend our tool by considering other
optimization techniques, like materialized views, parallel
processing, clustering, etc. Another possible extension is to
consider other selection algorithms like ant colonies, taboo
search, etc.

REFERENCES

[1] S. Agrawal. Automatic sql tuning in oracle 10g. In
Proceedings of the 30th International Conference on Very
Large Databases (VLDB), 2004.

[2] S. Agrawal. Database tuning advisor for microsoft sql server
2005. In Proceedings of the 30th International Conference on
Very Large Databases (VLDB), 2004.

[3] K. Aouiche, J. Darmont, O. Boussaid, and F. Bentayeb.
Automatic Selection of Bitmap Join Indexes in Data
Warehouses. 7th International Conference on Data
Warehousing and Knowledge Discovery (DAWAK 05),
August 2005.

K.BOUKHALFA & al.

 102

[4] L. Bellatreche, K. Boukhalfa, and H. I. Abdalla. Saga: A
combination of genetic and simulated annealing algorithms
for physical data warehouse design. in 23rd British National
Conference on Databases, (212-219), July 2006.

[5] L. Bellatreche, R. Missaoui, H. Necir, and H. Drias. A data
mining approach for selecting bitmap join indices. Journal of
Computing Science and Engineering, 2(1):206–223, January
2008.

[6] Ladjel Bellatreche, Kamel Boukhalfa, and Pascal Richard.
Horizontal partitioning in data warehouse: Hardness study,
selection algorithms and validation on oracle10g. in 10th
International Conference on Data Warehousing and
Knowledge Discovery (DaWaK 2008), pages 87–96,
September 2008.

[7] Ladjel Bellatreche, Rokia Missaoui, Hamid Necir, and
Habiba Drias. A data mining approach for selecting bitmap
join indices. Journal of Computing Science and Engineering,
2(1) :206–223, 2008.

[8] Kamel Boukhalfa. De la conception physique aux outils
d’administration et de tuning des entrepˆots de donn´ees.
Ph.d. thesis, Ecole Nationale Sup´erieure de M´ecanique et
d’a´eronautique Poitiers et Universit´e de Poitiers, July 2009.

[9] S. Chaudhuri. Index selection for databases: A hardness
study and a principled heuristic solution. IEEE Transactions
on Knowledge and Data Engineering, 16(11):1313–1323,
November 2004.

[10] C. Chee-Yong. Indexing techniques in decision support
systems. Phd. thesis, University of Wisconsin - Madison,
1999.

[11] OLAP Council. Apb-1 olap benchmark, release ii. http
://www.olapcouncil.org/ research/ resrchly.htm, 1998.

[12] K. EL Gebaly and A. Aboulnaga. Robustness in automatic
physical database design. in 11th International Conference
on Extending Database Technology (EDBT’08), March,
2008.

[13] T. Johnson. Performance measurements of compressed
bitmap indices. Proceedings of the International Conference
on Very Large Databases, 1999.

[14] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems:Second Edition. Prentice Hall, 1999.

[15] A. Sanjay, V. R. Narasayya, and B. Yang. Integrating
vertical and horizontal

[16] Partitioning into automated physical database design.
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 359–370, June 2004.

[17] A. Sanjay, C. Surajit, and V. R. Narasayya. Automated
selection of materialized views and indexes in microsoft sql
server. Proceedings of the International Conference on Very
Large Databases, pages 496–505, September 2000.

[18] Zohreh Asgharzadeh Talebi, Rada Chirkova, Yahya Fathi,
and Matthias Stallmann. Exact and inexact methods for
selecting views and indexes for olap performance
improvement. 11th International Conference on Extending
Database Technology (EDBT’08), Mars 2008.

[19] D. C. Zilio, J. Rao, S. Lightstone, G. M Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. Db2 design advisor:
Integrated automatic physical database design. Proceedings
of the International Conference on Very Large Databases,
pages 1087– 1097, August 2004.

