Numerical study of a vertical pullout capacity of strip anchor plate on a frictional soil

  • Hicham Mokhbi Laboratoire de Recherche en Génie Civil, Université de Biskra, BP145 Biskra 07000, Algeria
  • Mekki Mellas Laboratoire de Recherche en Génie Civil, Université de Biskra, BP145 Biskra 07000, Algeria
  • Abdelhak Mabrouki Laboratoire de Recherche en Génie Civil, Université de Biskra, BP145 Biskra 07000, Algeria
  • Jean-Michel Pereira Laboratoire NAVIER, École des Ponts ParisTech

Abstract

This paper presents a numerical study of the ultimate pullout capacity of an isolated strip plate anchor, using the finite element method by Plaxis 2D software. The plate anchor is assumed rigid horizontally installed in a frictional soil and subjected to a centered vertical load. The soil behavior is governed by an elastic-perfectly plastic law, and Mohr-Coulomb criterion was adopted. The ultimate pullout capacity is expressed in terms of pullout factor Nγ for different values of the depth H and the internal friction angle of soil φ'. The numerical results obtained allow us to propose a simple relationship to calculate the pullout factor of a strip plate anchor embedded horizontally in frictional soil. The numerical results of this study are finally compared to those available in the literature.

References

Ahmadizadeh, V., B. Kalantari & A. Eskandarinejad (2011) Influence of non-associated flow rule on seismic uplift capacity of horizontal strip anchors. Electronic Journal of Geotechnical Engineering 16: 1175–1184.
Balla, A. (1961) The resistance of breaking-out of mushroom foundations for pylons. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France. Rotterdam, The Netherlands 1:569–576.
Basudhar, P. K. & D. N. Singh (1994) A generalized procedure for predicting optimal lower bound break-out factors of strip anchors. Géotechnique 44(2):307-318.
Bhattacharya, P. & J. Kumar (2014) Vertical pullout capacity of horizontal anchor plates in the presence of seismic and seepage forces. Geomechanics and Geoengineering 9(4):294-302.
Brinkgreve, R. B. J. E. Engin, W. M Swolfs (2012) Plaxis user’s manual. Netherlands: Plaxis BV.
Caquot, A. & L. Kerisel (1948) Traité de mécanique des sols. Paris: Gauthier-Villars, Paris.
Das, B. M., & G. R. Seeley (1975) Break-out resistance of shallow horizontal anchors. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers 101(9): 999–1003.
Dickin, E. A. (1988) Uplift behaviour of horizontal anchor plates in sand. Journal of Geotechnical Engineering, American Society of Civil Engineers 114(11): 1300–1317.
Downs, D. I. & R. Chieurzzi (1966) Transmission tower foundations. Journal of the Power Division, American Society of Civil Engineers 92(2): 91–114.
Ganesh, R. & J. P. Sahoo (2015) Influence of ground water on the ultimate uplift resistance of circular plate anchors. 50th Indian Geotechnical Conference, 17th – 19th December 2015, Pune, Maharashtra, India.
Ghaly, A. & A. Hanna (2003) Response of anchors to variations in displacement-based loading. Canadian Geotechnical Journal 40(3):694–701.
Ghosh, P. (2009) Seismic vertical uplift capacity of horizontal strip anchors using pseudo-dynamic approach. Computers and Geotechnics 36(1) :342–351.
Giffels, W. C., R. E. Graham & J. F. Mook (1960) Concrete cylinder anchors proved for 345-KV tower line. Electrical World 154:46–49.
Hanna, A., T. Ayadat, & M. Sabry (2007) Pullout resistance of single vertical shallow helical and plate anchors in sand. Geotechnical and Geological Engineering 25(5):559–573.
Hanna, T. H, R. Sparks & M. Yilmaz (1971) Anchor behaviour in sand. Journal of the Soil Mechanics and Foundations Division. American Society of Civil Engineers 98(11):1187–1208.
Ilamparuthi, K., E. A. Dickin & K. Muthukrisnaiah (2002) Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand. Canadian Geotechnical Journal 39(3):648–664.
Kanakapura, S., S. Rao & J. Kumar (1994) Vertical uplift capacity of horizontal anchors. Journal of Geotechnical Engineering 120(7):1134-1147.
Khatri, V. N. & J. Kumar (2011) Effect of anchor width on pullout capacity of strip anchors in sand. Canadian Geotechnical Journal 48(3):511–517.
Koutsabeloulis, N. C. & D. V. Griffiths (1989) Numerical modelling of the trapdoor problem. Géotechnique 39(1):77–89.
Kumar, J. & K. M. Kouzer (2008) Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements. Canadian Geotechnical Journal 45(5):698–704.
Mabrouki, A. & M. Mellas (2014) Étude tridimensionnelle de la capacité ultime des plaques d’ancrage dans un sol frottant. Courrier du Savoir, 18:15–19.
Merifield, R. S. & S. W. Sloan (2006) The ultimate pullout capacity of anchors in frictional soils. Canadian Geotechnical Journal 43(8):852–868.
Merifield, R. S., A. V. Lyamin & S. W. Sloan (2006) Three-dimensional lower-bound solutions for the stability of plate anchors in sand. Géotechnique 56(2):123–132.
Meyerhof, G. G. & J. I. Adams (1968) The ultimate uplift capacity of foundations. Canadian Geotechnical Journal 5(4):225–244.
Mors, H. (1959) The behaviour of mast foundations subject to tensile forces. Bautechnik 10: 367–378.
Murray, E. J. & J. D. Geddes (1987) Uplift of anchor plates in sand. Journal of Geotechnical Engineering, American Society of Civil Engineers 113(3): 202– 215.
Rowe, R. K. & E. H. Davis (1982) The behaviour of anchor plates in sand. Géotechnique 32(1):25–41.
Rowe, R. K. (1978) Soil structure interaction analysis and its application to the prediction of anchor behaviour. Ph.D. thesis, University of Sydney, Sydney, Australia.
Saeedy, H. S. (1987) Stability of circular vertical earth anchors. Canadian Geotechnical Journal 24(3):452-456.
Sakai, T. & T. Tanaka (1998) Scale effect of a shallow circular anchor in dense sand. Soils and Foundations., Japan, 38(2): 93–99.
Sarac, D. Z. (1989) Uplift capacity of shallow buried anchor slabs. Proceedings, 12th International Conference on Soil Mechanics and Foundation Engineering 12(2):1213-1218.
Smith, C. S. (1998) Limit loads for an anchor/trapdoor embedded in an associated coulomb soil. International journal for Numerical and Analytical Methods in Geomechanics 22(11):855-865.
Tagaya, K., A.Tanaka & H. Aboshi (1983) Application of finite element method to pullout resistance of buried anchor. Soils and Foundations., Japan, 23(3):91–104.
Tagaya, K., R. F. Scott & H. Aboshi (1988) Pullout resistance of buried anchor in sand. Soils and Foundations. Japan, 28(3): 114–130.
Terzaghi, K. (1943) Theoretical soil mechanics, John Wiley and Sons, New York.
Turner, E. Z. (1962) Uplift resistance of transmission tower footings. Journal of the Power Division. American Society of Civil Engineers 88(2):17–33.
Vermeer, P. A. & W. Sutjiadi (1985) The uplift resistance of shallow embedded anchors. Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco 4:1635–1638.
Vesic, A. S., (1971) Breakout resistance of objects embedded in ocean bottom. Journal of Soil Mechanics and Foundation Engineering, American Society of Civil Engineers 97(SM9):1183-1205.
Wang, D., R. S. Merifield & C. Gaudin (2013) Uplift behaviour of helical anchors in clay. Canadian Geotechnical Journal 50:575-584.
Published
2016-06-19
How to Cite
MOKHBI, Hicham et al. Numerical study of a vertical pullout capacity of strip anchor plate on a frictional soil. Journal of Applied Engineering Science & Technology, [S.l.], v. 2, n. 1, p. 31-37, june 2016. ISSN 2352-9873. Available at: <https://revues.univ-biskra.dz/index.php/jaest/article/view/1643>. Date accessed: 29 mar. 2024.
Section
Section C: Geotechnical and Civil Engineering

Keywords

Plate anchor; Pullout capacity; Finite element; Frictional soil

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.