Fine particles production in sand under triaxial compression

  • Sadok Feia Laboratoire Navier, CERMES, Ecole des Ponts ParisTech, Marne-la-Vallée, Université Paris-Est
  • Xavier Clain Laboratoire Navier, CERMES, Ecole des Ponts ParisTech, Marne-la-Vallée, Université Paris-Est
  • Jean Canou Laboratoire Navier, CERMES, Ecole des Ponts ParisTech, Marne-la-Vallée, Université Paris-Est
  • Jean Sulem Laboratoire Navier, CERMES, Ecole des Ponts ParisTech, Marne-la-Vallée, Université Paris-Est
  • Siavash Ghabezloo Laboratoire Navier, CERMES, Ecole des Ponts ParisTech, Marne-la-Vallée, Université Paris-Est


An experimental study, carried out in laboratory using a triaxial apparatus, proposes to evaluate the influence of grain size, grain shape and confining stress in fine particles production in sand specimen subjected to triaxial loading. 16 triaxial tests were conducted on specimens of an initial density index of 0.90 using the pluviation technique, with three different sands and under initial confining pressure of 100, 400, 800 and 1200 kPa. The experimental results show that the fine particles production is considerably affected by confining stresses, even at low values (100 kPa), and also by grain geometry. The experimental results show also that the fine particles production increase with the strain level during the shearing test.


Al-Abduwani, F. A. H., A. Shirzadi, W. M. G. T. van den Broek, P. K. Currie (2005) Formation damage vs. solid particles deposition profile during laboratory-simulated PWRI. Society of petroleum engineers journal 10(2): 138–151.
ASTM D 4253 (2006) Standard test methods for maximum index density and unit weight of soils using a vibratory table.
Benahmed, N. (2001) Comportement mécanique d’un sable sous cisaillement monotone et cyclique: application aux phénomènes de liquéfaction et de mobilité cyclique. Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, Marne-la-Vallée, France.
Benahmed, N., J. Canou, J. C. Dupla (2004) Structure initiale et proprietes de liquefaction statique d’un sable. Comptes rendus mécanique 332(11): 887-894.
Chuhan, F.A., A. Kjeldstad, K. Bjørlykke, K. Høeg (2002) Porosity loss in Sand by Grain Crushing—Experimental Evidence and Relevance to Reservoir Quality. Marine and Petroleum Geology 19(1): 39-53.
Crawford, B. R., M. J. Gooch, D. W. Webb (2004) Textural controls on constitutive behavior in unconsolidated sands: micromechanics and cap plasticity. Proceedings of 6th Int. Conf. North American Rock Mechanics Symposium (NARMS). American Rock Mechanics Association, ARMA/NARMS 04-611
Dadda, A., S. Feia, S. Ghabezloo, J. Sulem (2015) Fraturation des grains et l’évolution de la micro-structure d’un sable sous fortes contraintes. CongrésAlgérien de Mécanique (CAM 2015), El Oued 25-27 Octobre 2015.
Farajzadeh, R. (2004) Produced water re-injection (pwri) an experimental investigation into internal filtration and external cake build up. Thesis, Faculty of Civil Engineering and Geosciences, Delft University of Technology.
Feda, J. (2002) Notes on the effect of grain crushing on the granular soil behaviour. Engineering Geology 63(1-2): 93-98.
Feia, S., J. Sulem, J. Canou, S. Ghabezloo, X. Clain (2016) Changes in permeability of sand during triaxial loading: effect of fine particles production. Acta Geotechnica 11(1): 1-19.
Feia, S., S. Ghabezloo, J. F. Bruchon, J. Sulem, J. Canou, J. F. Dupla (2014) Experimental evaluation of the pore-access size distribution of sands. Geotechnical Testing Journal 37(4): 1-8.
Hardin, B. O. (1985) Crushing of soil particles. Journal of geotechnical Engineering 111(10): 1177-1192.
Hazen, A. (1911) Discussion of ‘Dams on sand foundations’ by A. C. Koenig. Transactions of the American Society of Civil Engineers 73: 199-203.
Kolbuszewski, J. J. (1948) An experimental study of the maximum and minimum porosities of sands. 2nd International Conference Soil Mechanics Foundation Engineering, volume 1, Rotterdam.
Lade, P. V. & J. A. Yamamuro (1996) Undrained sand behavior in axisymmetric tests at high pressures. Journal of Geotechnical Engineering 122(2): 120-129.
Lee, K. L., I. Farhoomand (1967) Compressiblity and crushing of granular soil in anisotropic triaxial compression. Canadian Geotechnical Journal, 4(1): 68-86.
Levacher, D., J. Garnier, P. Chambon (1994) Reconstitution d’éprouvettes de sable: appareil de pluviation. Revue française de la géotechnique (68):49-56.
Li, Z., R. C. K. Wong (2008) Estimation of suspended particle retention rate and permeability damage in sandstone from back analysis of laboratory injection tests. Proceedings of canadian international petroleum conference. Society of Petroleum Engineers.
Miura, S., S. Toki (1982) A sample preparation method and its effect on static and cyclic deformationstrength properties of sand. Soils and Foundations 22(1): 61-77.
Nguyen, V.H. (2012) Compaction des roches réservoirs peu ou non consolidées: impacts sur les propriétés de transport. Thèse de doctorat, Université de Cergy-Pontoise.
Rad, N.S., M.T. Tumay (1987) Factors affecting sand specimen preparation by raining. ASTM Geotechnical Testing Journal 10(1): 31-57.
Vaid, Y.P., D. Negussey (1984) Relative density of air and water pluviated sand. Soils and Foundations 4(2): 101-105.
How to Cite
FEIA, Sadok et al. Fine particles production in sand under triaxial compression. Journal of Applied Engineering Science & Technology, [S.l.], v. 3, n. 1, p. 1-6, dec. 2016. ISSN 2352-9873. Available at: <>. Date accessed: 28 apr. 2017.
Section C: Geotechnical and Civil Engineering


Triaxial test; Granular materials; Grain breakage; Fine particles