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Abstract: This paper presents a theoretical and exact procedure for the stability analysis of braced
steel frames, taking in account the flexibility effect of the beam-column connections. In order to
determine the effective length factor (K-factor). The isolated subassembly approach is used to
establish the buckling governing equation. In this study, the relative stiffness coefficient at the
isolated column ends is provided by the remainder members of the structure, rather than of the
relative stiffness factor in the alignment chart method. A computer program for plane structure
analysis is used to evaluate the relative stiffness coefficients. To illustrate the accuracy of the
established transcendental equation, K-factor values for the case of fully rigid connections, are
compared to the exact and the French rules results. The effect of the type of transfer elements
between the frame members, in term of fixity factors is investigated. Moreover, the effect of
restraining conditions, provided by the whole frame structure, in term of relative stiffness
coefficients, is also studied.  The obtained results revealed that the buckling critical loads of the
columns in frames of rigid members are significantly affected by the fixity factors variation, unlike
in flexible structures.
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1. Introduction

For decades, researchers have developed various approaches for
assessing column and frame stability in the design of steel
structures. Most approaches, known as the effective length
method, deal with the effective length factor (herein K-factor)
and the buckling strength of individual compressed members.
Aimed at providing sufficient simplicity for hand calculations, the
effective length method is based on some assumptions that may
have considerable influence on accuracy (Gantes and Mageirou
2005).

In current design practice, the connections of beam-to-column
and column bases in steel frames are often idealized either as
purely pinned or fully rigid connections. However, numerous
experimental researches showed for a long time, that the
behavior of these latter is rather between these two extremes
(Picard and Beaulieu 1985; Canadian CSA 1989; Montforton and
Wu 1963). The semi-rigid behavior of beam-columns connections
of the structures, affects the internal efforts in the structure
members and consequently, the buckling critical loads and
corresponding effective lengths of the compressed elements
(Simoes 1996; Webber et al. 2015).

It is well known that the maximum strength of frames and the
maximum strength of an axially loaded column are interrelated.
Therefore the determination of critical buckling loads of columns
in braced or unbraced steel frame columns is of primordial
importance during design. Various methods have been proposed
for the analysis of the frames stability and for the evaluation of

the effective length factor of columns. All these methods get into
three approaches, namely, the isolated subassembly approach,
the story-based- approach and the system buckling approach. Al
these methods consider the assumption of considering only the
effect of beams and columns, connected directly to the
considered column G-factor (Bridge and Fraser 1987), rather
than the rigidity effect, provided by the overall structure.

Since the 60s, the evaluation of the K-factor for semi-rigid jointed
braced frames has been considered by many researchers (Barakat
and Chen 1990; Dumonteil 1992; Kavanagh 1962; Tong and Wang
2004). Kishi et al. 1998, who proposed a procedure to evaluate
the effective length factor of columns in flexibly jointed and
braced frames, based on classical alignment chart (Goto et al
1993). The authors introduced the modified relative stiffness
factor to account for the non-linear connection stiffness. Their
study shows that the alignment chart can be applied to
determine K-factor for flexibly jointed and rigid frames by
estimating the tangent connection stiffness at the buckling (Xu
and Liu 2002) presented a practical method for the stability
analysis of semi-braced steel frames, based on the concept of
story-based buckling. They introduced the concept of the lateral
bracing factor to characterize the lateral bracing for the column
and frame. The author found that the critical buckling loads of
the frame increase considerably as the end-fixity factors increase
from zero to 0.3 for beam-to-column connections. (Tong and
Wang 2004) proposed a new method for determining the column
effective length in one-span symmetrical frames; its high
accuracy has been displayed through a large number of
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examples. Xu and Liu (2002) extend the proposed method to
multi-span multi-story unsymmetrical frames in which they
considered both the inter-column and the inter-story interaction.
The authors have proposed a method of evaluating the critical
frame-buckling loads for multi-story unbraced steel frames
subjected to variable loading. The validity of the proposed
method is demonstrated by two-bay two stories unbraced steel
frames. The authors have considered the effects of the
connection behavior on the critical frame-buckling loads in a
variable case, as well as cases with different rigidities of beam to-
column connections (Webber et al. 2015). Recently, Hellesland
(2012) proposed approximate formulas for effective length
evaluation of isolate compressed members, where positive and
negative restraints are reviewed and discussed.

Based on the derivation of the elastic stability equation for a
braced column, a method of evaluating the buckling load and K-
factors for braced frames is presented in this paper. A procedure
based on the global effect of the frame on the compressed
member in multistory braced and semi rigid jointed frames is also
presented. The effect of the frame on the ends of the column is
modeled by rotational springs whose rigidities are obtained by
applying unity pointed moments and computing the rotational
angles at points, corresponding to the ends of the considered
column. Calculating the rigidity is achieved using a FORTRAN
program for computing planar structures. This calculation code
considers the semi-rigid connections between the members of
the structure. The buckling equations are derived based on
nonlinear moment rotation relationship taking into account the
proper stiffness of the connection in term of fixity factor. The
obtained transcendental equation is solved for different
restraining rigidities and fixities factors. Numerical examples have
demonstrated that the proposed method is efficient to estimate
the buckling load and corresponding K-factors for the braced
frames.

2. Modeling of isolated member

In this study based on the isolated member analysis, the
interaction between the column AB and the remainder of the
structure, can be reflected by the springs restraints of stiffness’s
CA and CB, as illustrated in Figure 1, while the effect of the flexible
transfer elements at the ends is represented by two other springs
having A and B as coefficients of flexibility.

3. Moment–rotation relationship of a column

According to the semi rigid column shown in Figure 2, the
rotations angles at the column ends A and B, considering large
displacement and proper connections rotations are given by
(Timoshenko and Gere 1966):

A c B c
A A

c c

M L M Lθ α ψ φ
3EI 6EI

   (1a)

cAL B c
B B

c c

M M Lθ α φ ψ
6EI 3EI

   (1b)

Where Aα and Bα are proper connections rotations at ends A and

B respectively.

Fig.1. Braced frame (a), Remainder frame (b) and isolated member (c)

Fig.2. Isolated member modeling.

Where Aα and Bα are proper connection rotations at the ends A

and B, respectively;

E: Young's modulus;

Ic: moment of inertia of the column;

Lc: column length;

P: compression load;

 and  are functions of P, Lc , E and Ic

3 1 1φ
u sin2u 2u
   
 

(2a)

3 1 1ψ
2u 2u tan2u
   
 

(2b)

Where

c

c

L Pu
2 EI

 (3)

The proper rotations of the connections A and B are related to
the ends moments MA and MB by:

A A Aα λ M (4a)

B B Bα λ M (4b)
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Where λ and λ are the proper flexibilities of the connections A
and B respectively.λ and λ are related to fixity factors of the connections A and B
by Montforton and Wu (1963):

c
A

c c A

Lγ
L 3EI λ



(5a)

c
B

c c B

Lγ
L 3EI λ



(5b)

For a column with rigid ends, the corresponding values of γ andγ are unity because the values λ and λ are taken to be zero.

For a column with purely pinned ends, the connections
flexibilitiesλ andλ are to be infinite and the corresponding
values of γ and γ are zero.

The values of γ and γ are between zero and unity for a column
with semi-rigid ends conditions.

The fixity factor value is experimentally determined and it
depends on the transfer element type, used to assemble
different members of the frame structure (Picard and Beaulieu
1985).

Then, the upper and lower connections flexibilities are related to
corresponding fixity factors by:

c A
A

c A

L 1 γλ
3EI γ


 (6a)

c B
B

c B

L 1 γλ
3EI γ


 (6b)

Finally the equations (1 a) and (1 b) can be expressed in terms of
the ends fixity factors as:

A c A B c
A

c A c

M L 1 γ M Lθ ψ φ
3EI γ 6EI

 
   

 
(7a)

cAL B c B
B

c c B

M M L 1 γθ φ ψ
6EI 3EI γ

 
   

 
(7b)

4. Derivation of K-factor governing equation of the
column with semi-rigid ends conditions

The rotations θ and θ of the connections A and B of the frame
(Figure. 1b) are related to the applied unite torques M andM
by the stiffness coefficients C and C , provided by the hole
frame structure

A
A

A

MC
θ

 (8a)

B
B

B

MC
θ

 (8b)

C and C are determined by applying unite torques (M =M = 1) at the upper and lower connections A and B of the
frame structure ( Figure. 1b).

By substituting (Eq. 8) in (Eq. 7) we can obtain the following
equations:

c A c
A B

A c A c

1 L 1 γ LM ψ M φ 0
C 3EI γ 6EI
  

        
(9a)

c c B
A B

c B c B

L 1 L 1 γM φ M ψ 0
6EI C 3EI γ

  
        

(9b)

Eqs. (9a) and (9b) can be written in the following matrix form:

c A c

A c A c A

Bc c B

c B c B

1 L 1 γ Lψ φ
C 3EI γ 6EI M

0
ML 1 L 1 γφ ψ

6EI C 3EI γ

  
   

               

(10)

This equations system can have two possible solutions:

The first is the banal solution of M = M = 0, in this case
buckling do not occur.

The second solution which characterizes the buckling state is by
setting:

c A c

A c A c

c c B

c B c B

1 L 1 γ Lψ φ
C 3EI γ 6EI

det 0
L 1 L 1 γφ ψ

6EI C 3EI γ

  
   

           

(11)

The Euler buckling load of the column is given by:

2
c

e 2
c

π EIP
L

 (12)

The buckling critical load of the column is given by:

2 2
c c

cr 2 2
c c

4u EI π EIP
L (KL )

  (13)

In which, 	Kdenote the effective length factor.

by setting:

c
A

c A

EIR
L C
 (14a)

c
B

c B

EIR
L C
 (14b)

Where c

c

EI
L

denote the flexural stiffness of the column.

The general K-factor equation can be expressed as follows:

3

1 2 3 4 3

3K K 1 π π πF F F F tan 0Kπ π 8K 2K 2Ktan
π

 
            

   
 

(15)

In which:

   1 A A B B B AF 12 R γ 1 γ 12 R γ 1 γ   
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2 A BF 4(1 γ )(1 γ )  

3 A B A BF 36 R R γ γ

 4 A B A BF 4 γ γ 2γ γ  

In practice, the connections in a frame structure are identical and
have almost the same behavior, and as a result the same fixity
factors. Therefore in this particular case we can consider that

A Bγ γ γ  . Thus the K-factor governing equation can be

reduced to:

3

1 2 3 4 3

3K K 1 π π πG G G G tan 0Kπ π 8K 2K 2Ktan
π

 
            

   
 

(16)

In which:

 1 A BG 12(R R )γ 1 γ  

2
2G 4(1 γ ) 

2
3 A BG 36R R γ

 4G 8γ 1 γ 

In the case of column pinned at the low end and partially fixed at
the upper end, the moment at the lower end is equal to zero. The
K-factor governing equation can be reduced to the following
expression:

B
3K K 1 3R 0Kπ π tan

π

 
 
   

  
 

(17)

5. K-factor of columns in braced frame structure

5.1 Results comparison

In order to illustrate the accuracy of the proposed procedure, a
comparative study is conducted using a few sample points.

Table 1 show the comparison of the effective length factor K
obtained by solving Eq. (16) of the present work, and that
obtained by the approximate French Rules (Dumonteil 1992)
with those obtained by solving the corresponding exact equations
(Barakat and Chen 1990) for braced frames and sway frames in
the case of rigidly fixed connections (=1), respectively. The
results show the accuracy of the derived equations compared to
the exact results. For these reasons, we can consider the
obtained results as exact.

5.2 K-factor of columns flexibly jointed and braced frames

In order to evaluate the effective length factor values for
different restraining conditions and different fixity factors values
of a column situated at any story of the multi-story braced
frames, the transcendental Eq. (16) and Eq. (17) are solved,  using
a numerical iterative method. From mathematical point of view,
the results are supposed to be exact taking into account physical
assumptions; the decision should be taken by the designer. The
obtained results of the effective length factor (K-factor) are
presented in tables (2, 3, and 4). The effective length factor has
been evaluated for a large range of stiffness coefficients RA and
RB and for three values of fixity factors ( = 1,  = 0.6 and  = 0.3).
The results show that for RA = RB = 10, the column has
substantially the same behavior of a pinned column.

5.3 K-factor of columns flexibly jointed and braced frames

The curves of (Figure 3) show the variation of K-factor versus the
ends relative rigidity coefficients (R = RA = RB) of a columns in
braced frames for different values of the fixity factor ().
According to the curves K-factors converge towards unity for
relative rigidity coefficients R >3.0. The frame columns behave as
pinned ends columns, of critical buckling load equal to Euler’s
critical load, therefore the fixity factor has no effect on
connections relative rigidity coefficients greater than 3.0. It can
also be seen according to the curves, that for fixity factor values
higher than 0.6 the values of K-factor are closer to each other .
However for  lower than 0.4 the behavior of the connection is
too close to that of a pinned ends column.

Table 1. Effective length factor (K) comparison (Fully fixed).

GA GB RA RB Present work Exact (Hellesland 2012) French rule (Dumonteil 1992)
0.10 0.400 0.050 0.200 0.6030 0.603 0.608
0.25 0.250 0.125 0.125 0.6110 0.611 0.619
0.10 0.900 0.050 0.450 0.6480 0.648 0.651
0.25 0.750 0.125 0.375 0.6717 0.672 0.677
0.50 0.500 0.250 0.250 0.6862 0.686 0.692
0.10 1.900 0.050 0.950 0.6829 0.683 0.685
0.25 1.750 0.125 0.875 0.7158 0.716 0.721
0.50 1.500 0.250 0.750 0.7510 0.751 0.756
1.00 1.000 0.500 0.500 0.7742 0.774 0.778
0.50 4.500 0.250 2.250 0.7923 0.792 0.798
1.00 4.000 0.500 2.000 0.8402 0.840 0.844
2.50 2.500 1.250 1.250 0.8772 0.877 0.879
0.50 9.500 0.250 4.750 0.8064 0.806 0.813
1.00 9.000 0.500 4.500 0.8583 0.858 0.862
2.50 7.500 1.250 3.750 0.9129 0.913 0.914
5.00 5.000 2.500 2.500 0.9302 0.930 0.931
50.0 4.000 25.00 2.000 0.9524 0.952 0.953
50.0 10.00 25.00 5.000 0.9770 0.977 0.977
100.0 50.00 50.00 25.00 0.9940 0.994 0.994
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Table 2. K-factor for fully fixed and braced column  = 1.

0.0 0.25 0.50 0.75 1.00 2.00 5.00 10.00

0.00 0.5000 0.5895 0.6260 0.6445 0.6555 0.6750 0.6889 0.6939
0.25 0.5895 0.6863 0.7287 0.7510 0.7647 0.7892 0.8070 0.8136
0.50 0.6260 0.7287 0.7743 0.7982 0.8133 0.8402 0.8599 0.8672
0.75 0.6445 0.7510 0.7982 0.8237 0.8392 0.8675 0.8884 0.8961
1.00 0.6555 0.7647 0.8133 0.8392 0.8553 0.8846 0.9061 0.9140
2.00 0.6750 0.7892 0.8402 0.8676 0.8846 0.9156 0.9385 0.9470
5.00 0.6889 0.8070 0.8599 0.8884 0.9061 0.9385 0.9625 0.9714
10.00 0.6939 0.8136 0.8672 0.8961 0.9140 0.9470 0.9714 0.9805

Table 3. K-factor for semi-rigid fixed ends and braced column  = 0.6.

0.0 0.25 0.50 0.75 1.00 2.00 5.00 10.00

0.00 0.6721 0.7178 0.7413 0.7554 0.7648 0.7836 0.7989 0.8049
0.25 0.7178 0.7670 0.7925 0.8080 0.8184 0.8392 0.8563 0.8630
0.50 0.7413 0.7925 0.8193 0.8355 0.8465 0.8685 0.8865 0.8937
0.75 0.7554 0.8080 0.8355 0.8523 0.8636 0.8864 0.9051 0.9126
1.00 0.7648 0.8184 0.8465 0.8636 0.8751 0.8984 0.9176 0.9253
2.00 0.7836 0.8392 0.8685 0.8864 0.8984 0.9228 0.9430 0.9510
5.00 0.7989 0.8563 0.8865 0.9051 0.9176 0.9430 0.9640 0.9640
10.00 0.8049 0.8630 0.8937 0.9126 0.9253 0.9510 0.9724 0.9809

Table 4. Factor for semi-rigid fixed ends and braced column  = 0.3.

0.0 0.25 0.50 0.75 1.00 2.00 5.00 10.00

0.00 0.8278 0.8428 0.8529 0.8603 0.8659 0.8792 0.8928 0.8991
0.25 0.8428 0.8581 0.8686 0.8762 0.8820 0.8957 0.9097 0.9162
0.50 0.8529 0.8686 0.8793 0.8871 0.8930 0.9070 0.9213 0.9280
0.75 0.8603 0.8762 0.8871 0.8950 0.9010 0.9152 0.9298 0.9366
1.00 0.8659 0.8820 0.8930 0.9010 0.9070 0.9215 0.9362 0.9431
2.00 0.8792 0.8957 0.9070 0.9152 0.9215 0.9363 0.9515 0.9586
5.00 0.8928 0.9097 0.9213 0.9298 0.9362 0.9515 0.9672 0.9745
10.00 0.8991 0.9162 0.9280 0.9366 0.9431 0.9586 0.9745 0.9819

5.4 Fixity factor effect

In practice the connections beam-column in frame structures are
idealized and are considered as fully rigid or pinned. However the
actual behavior of this connection is between these extremes. In
order to know the effect of partially rigid connections on the
buckling critical load of a column in braced frames, a parametric
study is done for different values of connections relative rigidity
coefficient R.

Curves of Figure 4 show the variation of the K-factors versus the
fixity factor for different values of R.

6. Numerical example

In the first example, three-storey steel frame, as shown in Figure
5, is considered. The moments of inertia for the beam and
columns are Ib = 2I and Ic = I, respectively. Young’s modulus of
steel is taken as E = 200 GPa.

Fig.3. Braced effective length factor versus relative rigidity coefficient. Fig.4. Braced effective length factor versus fixity factor ().

RA

RB

RA
RB

RA
RB
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The frame has semi-rigid connections of equal fixity factors at the
two ends of each of the members. Fixity factors values
considered are  = 1.0,  = 0,6 and  = 0.3 The process of
evaluation of the effective length factors of the median frame
columns is shown below:

1- Step 1: computing the rigidities CA and CB of the lower and
upper connections A and B respectively by calculating A

and B (Figure 5) for the considered story. To do so, the
plane structures calculation program is used.

2- Step 2: calculation of the relative stiffness coefficients RA

and RB by mean of Eq. (14).

Solve the transcendental Eqs. (16) or (17) to evaluate the
effective length factor of a column in a semi-rigid jointed frame
for a given value of fixity factor .

Table 5 summarizes the effective length factors for the inner
columns of the frame found using the proposed method. The
effective length factors for the columns in each story are also
illustrated in Figure.6. For this frame, the weakest columns are in
the upper story because the relative rigidities provided to their
connections are less than those of the lowest columns. We can
also see, according to the Figure 6 that the three curves are
almost identical and have the same allure. According to Figure 7,
it could be shown that the K-factor of the column in a story has a
very linearly versus the fixity factor and in the same way.

Table 5. Numerical example

Fixity factor  Story RA RB K

1.0
1
2
3

0.09147
0.09366
0.14671

0
0.08966
0.09367

0.5422
0.5852
0.6065

0.6
1
2
3

0.1739092
0.174775
0.266062

0
0.17256
0.17455

0.7073
0.7444
0.7578

0.3
1
2
3

0.364975
0.365275
0.549540

0
0.36412
0.36500

0.8478
0.8687
0.8757

Fig.6. K-factor of stories columns.

Fig.5. Numerical example (a) Braced frame, (b) Remainder frame.

Fig.7. Numerical example (K-factor vs ).

7. Conclusions

In current engineering practice, the evaluation of the K-factor is
essential for the rational design of semi-rigid jointed frames.
In this paper, the governing equation for determining the column
K-factor for flexibly jointed and braced frames under various
boundary conditions using the slope–deflection equation
approach is derived on the basis of the strength of material.
It was shown, according to the comparative study that the
developed equation is mathematically exact and can be used for
a parametric study. Indeed, the relative rigidity coefficient of the
column ends provided by the remainder of the structure for
different values of fixity factor has been studied and the results
show that after the value of 0.3, the K-factor reach  the unity and
the column has almost the behavior of the ends pinned column
for any fixity factor value.

In this paper the beam-columns connections flexibilities effect
have been studied in term of fixity factors and the results showed
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that the effect of  is very significant for rigid structures (R  0.5).
However the effect of the fixity factor has almost no effect for
flexible frame structures and K-factor is almost constant,
especially for the values of R greater than 5. Also a numerical
example is dealt with in this paper. The results show that the
lowest columns are more stable for any type of transfer element
illustrated in term of fixity factors. For fully rigid jointed frame
( = 1), the critical buckling load of the lowest column is 1.25 time
of the upper one. However for semi-rigid jointed frame, the ratio
between the critical buckling loads of the lowest and the upper
columns is respectively 1.15 for  = 0.6 and 1.07 for  = 0.3).
These values show that in the case of frames with flexible beam-
columns connections, the columns buckling critical loads are
almost identical.
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