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Abstract: In this paper, a numerical modal analysis method is carried out to investigate the effect
of cable strain loss on the natural frequencies in prestressed concrete beams. A simply supported
concrete beam is modeled using the commercial finite element code ABAQUS. The beam is
composed of concrete and prestressing strands. Firstly, a general geometrically nonlinear static
analysis is carried out on the beam in order to obtain the camber deflection under different
prestressing magnitudes. The obtained equilibrium configuration is then used to perform a linear
and nonlinear modal analysis. Thereby, a three dimensional finite element C3D8 is used for the
concrete in combination with a damaged plasticity model (CDP) are considered. Whereas, the
prestressing strands are modeled with an embedded T2D2 truss element. The obtained results
show a good agreement with previous numerical and experimental works in literature.
Furthermore, the study showed that the safety of prestressed beams depend mainly on the level
of prestressing load.
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1. Introduction

Prestressed concrete structures are often used in construction for
their performance compared to those built with ordinary
reinforced concrete, especially in bridge structures. The
identification of tension level in prestressed concrete beams for
both the conceptual phase and service state is an important
endeavor. In order to evaluate their structural characteristics, the
modal analysis appears to be one of the most adopted methods
for damage detection in structures. The safety of this type of
design depends on the safety of its prestressing tendons.
According to the literature, several studies have been conducted
to study the effect of prestressing forces on the vibration
frequency variation of the prestressed concrete beams. These
studies have shown several contradictory argumentations
regarding the influence of the prestressing on the vibration
behavior.

Among these studies, one can cite the work of Clough (1975). The
author deduced an analytical equilibrium equation for a beam
axially loaded. It has been concluded that the eigenfrequencies of
the beam decrease when the axial compressive load increases.
Starting from this equation, Saiidi and Douglas (1994) elaborated
an experimental test on a prestressed concrete beam. The
authors found that the increase in prestressing forces leads to an
increase in the natural bending frequencies. Thereafter, this work
has been discussed by (Dall’asta and Leoni 1996; Jain and Goel
1996). The authors concluded that, in case of the axial
prestressing forces are supposed as external forces, the

compression softening effect of the concrete could be
responsible for the decrease in natural bending frequencies. In
2004, Kim et al. (Kim et al. 2004) used an empirical mathematical
formulation to study the effect of prestressing loads on natural
frequencies. The authors found that the natural frequencies
increase when the prestressing forces are increased.  The same
results were also found using the finite element model (Law and
Lu 2007; Bruggi et al. 2008; Breccolotti et al. 2009) as well as
experimentally (Noh et al. 2015). The latter investigated the
effects of several parameters such as: prestressing load,
eccentricity and tendon profile.   On the other hand, Hamed and
Frostig (2006) developed a nonlinear analytical model of a post-
tensioned beam. It has been found that the prestress force
magnitude has no effect on the vibration of the natural bending
frequencies.

In this paper a numerical modeling analysis is performed to
investigate the prestressing levels effect on the variability of
natural frequencies in a prestressed concrete beam. The
embedded element formulation is used to model the interaction
between steel and concrete. Furthermore, the concrete damaged
plasticity model is adopted for the nonlinear behavior analysis of
the concrete beam. The latter permit damage detection in
concrete following the critical stress states of the prestressed
concrete beam. Thereafter, a modal analysis is carried out to find
a satisfactory compromise between the aforementioned
contradictions found in the literature.
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2. Mechanical Constitutive Theories

2.1 Non-damaged concrete constitutive laws

The stress-strain behavior is taken according to Eurocode2
(2004). The secant elasticity modulus is:
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The stress-strain relation for nonlinear structural analysis of the
concrete is given by equation (2), where c is the compressive

stress in the concrete and cmf is the compressive strength
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Where,

1( / )c c   , 1 0.0024c  for 45 ckf MPa , 8cm ckf f MPa  ,

11.05 Ecm )( /c cmk f  , c is the compressive strain in

concrete, 1c is the strain at peak stress.

2.2 Damaged concrete constitutive laws

The concrete damaged plasticity (CDP) model is used as a
constitutive model which is highly recommended for the
nonlinear analysis of concrete structures (Arab et al. 2011). It
appears in the literature that Lee and Fenves (1998) were the
first who developed the CDP model. Figure 1 illustrates the
Stress-Strain relation of the damaged plasticity model in both
tension and compression, respectively. Furthermore, Table 1
gathers the different stresses and strain relations that can be
deduced from Figure 1 where the subscripts "t" and "c" stand for
tension and compression, respectively.

Fig 1. Stress-strain relation of the damaged plasticity model in: (a) tension
and (b) compression (Abaqus analysis user’s guide (2014)).

Table 1. Stresses and Strains relations.

Tension (figure 1a) Compression (figure 1b)
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2.3 Damage evolution law

To evaluate the stiffness degradation, the damage evolution law
is considered, which depends on compression and tension
behavior (Equation (3)). The mechanical parameters of steel,
concrete and damaged plasticity are taken as given in Table 2.
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3. Finite element modeling

3.1 Studied structure

In this study, a simply-supported prestressed concrete beam is
considered. The beam has a length L=600 cm with a cross
sectional area of (15x30) cm² (Figure 2). The prestressing tendon
is eccentric from the neutral axis bye=10cm.

Table 2. Mechanical Parameters of steel, concrete and plastic damaged
concrete.

Concrete plasticity parameters Value
Dilation angle (ψ) 35°
Eccentricity 0.1
fb0/fc0 1.16

( / )t ck   0.667
Viscosity parameter 0.001
Concrete mechanical parameters Value
Compressive strength fcm 45MPa
Tensile strength ftm 4.55MPa
Young modulus Ec 34290MPa
Density ρ 2400Kg/m3

Poisson’s ratio ν 0.18
Steel mechanical parameters Value
Young modulus Ep 209000 MPa
Density ρ 7850Kg/m3

Poisson’s ratio ν 0.3

0 0 /b cf f : Ratio of initial equi-biaxial and initial uniaxial compressive yield

stresses. k : Deviatoric failure stress surface of concrete.

(a)

(b)
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Fig 2. Prestressed concrete beam (Bruggi et al. 2008).

The tendon is made of three wire strands with a nominal
diameter φ=1.5 cm and a cross sectional area A=1.40 cm². It
should be noted that the ordinary reinforcement is neglected for
the sake of simplicity.

3.2 Finite element mesh

The numerical modeling is performed using finite element
ABAQUS software. The concrete is modeled using a linear brick
element C3D8, which is a timely cost effective element. The
tendon is represented with a truss element T2D2, which act
purely in the longitudinal direction. A uniformly meshing size was
considered with 5520 elements in the whole model. The
interaction properties between the prestressing tendon and the
concrete are established using embedded element technique.
This type of constraint gives a rigid connection between
contiguous nodes and assures a good compatibility between
different types of finite elements (truss/solid) (figure 3).

3.3 Passive case study (non-prestressed tendon)

The First step is the numerical modeling of the simply supported
beam without strands. The second step is by adding non-
prestressed strands to investigate their effect on the natural
bending frequencies. The aim of this analysis is to study the effect
of tendons number, on the natural bending frequencies.

3.4 Prestress application

In this case, a technique is carried out under several steps. The
first one is a general static analysis created to permit the release
of prestressing forces on the concrete beam, which was
introduced as initial stresses in the tendon (equation (4)).

xxσ /xx pf A (4)

Where, xxσ is the longitudinal stress in strands, xxf is the applied

force level on strands and pA is the cross sectional area of

strands. The sequential applied forces in the tendon are xxf =

22.5, 45, 67.5, 90 and 180 KN for one strand (Bruggi et al. 2008).
As aforementioned, the tendon is made of three wire strands; it
is modeled as one strand with its equivalent area.

Fig 3. Finite element details of the embedded profile inside the host
element.

The second step is also a general static analysis created to take
into account the gravitational loads. The geometric nonlinearity is
activated in order to obtain equilibrium between the prestressing
magnitudes and the beam’s self-weight. The last step is the
eigenfrequencies extraction, where it depends on the camber
deflection of the previous static analysis.

4. Results and discussion

4.1 Non-prestressed beam

In this study, the non-prestressed case is considered in order to
validate the numerical model. The table 3 gathers the results
found with the present model and those of Bruggi et al. (2008).
From table 2, it be seen that the obtained results show a good
agreement with those found in the literature. Moreover, the
results showed that the number of passive tendons embedded
inside the beam enhances the vibration frequencies, specifically
in the first mode with 2% for the no strands-three strands
configurations.

4.2 Prestressed beam

4.2.1 Linear analysis

Before modal analysis, it is important to achieve camber
deflection during static analysis. Once the stresses are
transferred, the beam starts to feel its own weight due to gravity
application. The figure 4 shows the effect of prestressing
magnitude on the camber deflection of the beam at mid-span.
From figure 4, it can be observed that the deflection values
depend on the applied prestressing magnitudes. Furthermore,
the eccentricity of the tendon, which generates a negative
moment of inertia, significantly affects the elastic deformations.
The obtained results show a small value of deformation
compared to the beam’s length, a deflection of 20 mm for the
highest value of prestressing (figure 4).

Table. 3. Effect of the non-prestressed strands on modal frequencies

Stran
ds N°

Mode 1(Hz) Mode 2 (Hz) Mode 3 (Hz)
Present
study

Bruggi
(2008)

Present
study

Bruggi
(2008)

Present
study

Bruggi
(2008)

0 14.182 14.141 54.615 54.553 105.84 106.90
1 14.284 14.312 55.021 54.571 106.60 107.53
2 14.378 14.471 55.392 54.563 107.29 108.08
3 14.463 14.619 55.730 54.567 107.93 108.62

Fig 4. Finite element details of the embedded profile inside the host
element.
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Nevertheless, these small deflections could generate excessive
stress in critical sections at mid-span. Indeed, the applied
prestressing forces in this case deal with a quasi-brittle material
that has a weak ultimate tensile stress. Figure 5 illustrates the
results of the effect of prestressing on the longitudinal S11stress
of the beam. Three levels of prestressing values were considered,
namely: 0 MPa, 160 MPa and 1286 MPa. In the case of 0 MPa, it
is observed that the beam generates tensile stresses at the
bottom flange and compressive stress at the upper flange. The
latter result could be explained by the fact that the beam is acting
only against its self-weight. Moreover, the maximum tensile
stress observed is about tσ = 2.011 MPa, which is smaller than the

ultimate tensile strength of the used concrete (ftm=4.55 MPa)
given in table 2. In the light of the above, one can conclude that
the beam is able to carry its own weight without damage
expectations. In the case of 160 MPa prestressing force, the static
results show that the tensile stresses disappear in lower flange
and a very small value of tensile stresses has occurred in the
upper flange. Regarding the case of 1286 MPa prestressing force,
the beam generates a tensile stress on the upper flange

tσ =9.136 MPa. In this case, the stress overpasses the ultimate

tensile strength of the used concrete ftm= 4.55 MPa (table 2). The
latter result gives the necessity to conduct a nonlinear analysis.

Table 4 exhibits the relationship between prestress forces and
their corresponding frequencies of the beam. From table 4, it can
be observed that frequencies follow linear augmentation. Indeed,
the frequencies have shifted from 14.463 Hz in the case of a non-
prestressed beam to 14.469 Hz in the case of maximum
prestressed magnitude. In the second mode, it can be seen that
the natural bending frequencies have decreased, which can be
explained by the use of the isostatic boundary condition. In the
third mode, one can observe an augmentation of 0.14 Hz and this
is due to enhancing of the flexural stiffness of the global
structure.

4.2.2 Non-linear analysis

Figure 6 shows the effect of the nonlinear stresses states in the
half concrete beam. As in the linear analysis, three prestressing
loads are considered in this section, namely: 0 MPa, 161 MPa and
1286 MPa.

Fig 5. Linear stresses states in the half concrete beam with: (a) 0 MPa, (b)
161 MPa and (c) 1286 MPa.

Table. 4. Prestress force effect on the natural bending frequencies

Prestress (MPa) Mode1 (Hz) Mode 2 (Hz) Mode 3 (Hz)
0 14.463 55.730 107.930
160 14.464 55.723 107.950
321 14.464 55.715 107.960
482 14.465 55.708 107.980
642 14.466 55.700 108.000
1286 14.469 55.668 108.070

Fig 6. Nonlinear stresses states in the half concrete beam with:(a) 0 MPa,
(b) 161 MPa and (c) 1286 MPa.

This could be explained by the fact that with these prestressing
loads, no damage is expected to occur and the concrete stays in
the elastic range. Regarding the case of 1286 MPa, it can be
noticed that this load generates a maximum tensile stress at the
upper flange of 4.24 MPa. This could be explained by the tensile
plastic damage state undergoes by the beam as shown in
figure 7.

Table 5 gives the results of the prestressing force effect on the
vibration frequencies using the plastic damaged concrete model.
From table 5, it can be well seen that the natural frequencies
start to increase with the increasing the prestressing loads till 482
MPa, then decrease to reach the minimum with the 1286 MPa
loads for the first and the third mode.

Table. 5. Prestress force effect on the natural bending frequencies.

Prestress (MPa) Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz)
0 14.463 55.730 107.93
160 14.464 55.722 107.94
321 14.464 55.712 107.89
482 14.465 55.698 107.77
642 14.453 55.596 107.06
1286 10.442 35.340 87.864

Fig 7. Tension damage state of the beam under the application of 1286
MPa of prestressing.
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However, with the second mode the natural frequencies decrease with
the increasing of the prestressing loads. The behavior noticed with the
first and the third mode could be explained by the fact that the beam is
loaded beyond the critical buckling load.

5. Conclusion

The aim of the present work was to investigate the effect of cable
strain loss on the natural frequencies in prestressed concrete
beams using the finite element method.

The initial linear analysis was focused on the effect of the number
of passive non-prestressed strands on the natural frequency
variation of the beam. The results show that changing the
number of the embedded strands inside the beam affects
positively the vibration behavior. This investigation gave
encouraging results, since the real goal is to monitor the health of
prestressed concrete beams.

Furthermore, in this work, a study is carried out on the effect of
the prestressing load on the natural frequencies of a prestressed
beam. The obtained results showed that a reduction in the
pretension magnitude leads to a small reduction in frequencies. It
was concluded that this is mainly due to the stiffness reduction of
the beam, which depends on the safety of prestressing tendons.

The nonlinear analysis showed a small increase in the natural
bending frequencies when applying small magnitudes of
prestressing. However, for high level of magnitude that exceeds
the critical buckling load, the natural frequencies significantly
decrease. The latter observations are in good agreement with the
nonlinear model of the concrete.

From this work we can conclude that the safety of prestressed
beams depends on the level of prestressing load. Furthermore,
the prestressing forces should not exceed the strength of the
concrete in compression as well as the loss of prestressing should
not generate a tensile stress in concrete.
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