Structural and elastic properties of BiOCu0.875S with Cu vacancies : A First principles study

  • Saïd LAKEL Laboratoire de Physique des Matériaux, Université de Laghouat, Algeria 2Laboratoire de Matériaux Semi Conducteurs et Métalliques, Université de Biskra, Algeria
  • M. IBRIR Laboratory of Physics of Materials and its Applications ,University Med BOUDIAF Msila, Algeria.
  • A. GUIBADJ Laboratoire de Physique des Matériaux, Université de Laghouat, Algeria

Résumé

The  structural and elastic properties of BiOCu0.875S with Cu vacancies have been investigated by using the first-principles density functional theory within the generalized gradient approximation. Population  analysis  suggests  that  the  chemical  bonding  in  BiOCu0.875S  has  predominantly  ionic  character  with  mixed covalent−ionic character. Basic physical properties, such as lattice constant, elastic constants Cij, bulk modulus B, shear modulus G, were calculated.  The  elastic  modulus E and  Poisson  ratio ν  the ratio B/G, shear anisotropy  and elastic anisotropy βca  were  also  predicted.  The  results  show  that  tetragonal  phase  BiOCu0.875S  is mechanically stable and behaves in a ductile manner. 

Références

[1] H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20,326 (2008).
[2] A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V.A. Dolgikh and B. A. Popovkin, J. solid state chemistry 112, 189-191 (1994).
[3] W. J. Zhu, Y. Z. Huang, C. Dong, Z. X. Zhao, Mater. Res. Bull. 29, 143 (1994).
[4] T. ohtani, Y. Tachibana, Y. Fujii, J. Alloys compd. 262-263, 175 (1997).
[5] Pele V, Barreteau C, Berardan D, Zhao L-D and Dragoe N 2013 J. Solid State Chem. 203 187–91
[6] I. R. Shein and A. L. Ivanovskii, Solid State Commun. 150, 640 (2010).
[7] A. Ubaldini, E. Giannini, C. Senatore, D. van der Marel, Physica C 470, s356 (2010).
[8] Anand Pal, H. Kishan, V.P.S. Awana, J. Supercond. Nov. Magn. 23, 301 (2010).
[9] L. Ortenzi, S.Biermann, O. K. Andersen, I. I. Mazin, and L.Boeri, Phys. Rev B 83, 100505(R) (2011).
[10] PENG F, CHEN D, YANG X D. Jour. Solid State Commun, 2009, 149: 2135−2138.
[11] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671–6687.
[12] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14 (2002) 2717–2744.
[13] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192.
[14] B.G. Pfrommer, M. Cote´ , S.G. Louie, M.L. Cohen, J. Comp. Physiol. 131 (1997) 233–240.
[15] L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 51 (1995) 17431–17438.
[16] SHEIN I R, IVANOVSKII A L. Jour. Physica C, 2009, 469: 15−19.
[17] HIRAMATSU H, YANAGI H, KAMIYA T, UEDA K, HIRANO M, HOSONO H. Jour. Chem Mater, 2008, 20: 326−334.
[18] HERMET P, GOUMRI-SAID S, KANOUN M B, HENRARD L, [J]. J Phys Chem C, 2009, 113: 4997−5003.
[19] XIA Q L, YI J H, LI Y F, PENG Y D, WANG H Z, ZHOU C S. Jour. Solid State Commun, 2010, 150: 605−608.
[20] MAZIN I I. Jour. Phys Rev B, 2010, 81: R140508
[21]. D. Pettifor. Mater. Sci. Technol. 8, 345 (1992). http://dx.doi.org/10.1179/026708392790170801
[22]. S. F. Pugh, Philos. Mag. 45, 823 (1954).
[23]. V. Kanchana and S. Ram, Intermetallics 23, 39 (2012). http://dx.doi.org/10.1016/j.intermet.2011.12.014
[24] SHEIN I R, IVANOVSKII A L. Jour. Physica C, 2009, 469: 15−19.
[25] SHEIN I R, IVANOVSKII A L. Jour. Scripta Materialia, 2008, 59: 1099−1102.
[26]. C. M. Zener, Elasticity, Anelasticity of metals (University of Chicago Press, Chicago, 1948).
Publiée
2008-11-08
Comment citer
LAKEL, Saïd; IBRIR, M.; GUIBADJ, A.. Structural and elastic properties of BiOCu0.875S with Cu vacancies : A First principles study. Science des matériaux (Laboratoire LARHYSS), [S.l.], v. 6, nov. 2008. ISSN 2352-9954. Disponible à l'adresse : >https://revues.univ-biskra.dz/index.php/sdm/article/view/1375>. Date de consultation : 24 avr. 2024