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ABSTRACT 

The supervision of technical processes is the subject of increased development because of the reliability and safety. The 
use of process computers and microcomputers permits the application of methods, which result in an earlier detection of 
process faults than is possible by conventional limit and trend checks. With the aid of process models, estimation and 
decision methods it is possible to also monitor non-measurable variables like process states, process estimation and 
characteristic quantities. This paper describes how recursive identification techniques can be used in order to detect the 
faults of the dynamic continuous systems. This approach employs a combination of operators, the system dynamic 
being expressed in terms of the incremental difference delta that serves to some theoretical advantages and the time 
delays expressed using the z operator. So, estimation of parameters of diagnose model, and the faults detection who 
makes to the aide of statistical methods based on the interval of confidence (χ2 distribution, Fisher distribution and 
Student distribution). This technique is validated in simulation by the application on a magnetic levitation vehicle 
system MLV. 
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1. INTRODUCTION 

Faults or failures in complex automated control systems 
are unavoidable fact that is why quick detection, 
location and identification are necessary in order to 
eventually accommodate the system. The fault detection 
and isolation (FDI) idea is the investigation subject of 
many researchers during the last years, as Clark (1978), 
Ge & Fang (1988), Patton & al. (1989), Gertler (1991), 
Park & Rizzoni (1994). Some approaches have been 
proposed for linear systems, for example, the unknown 
input observer (Kudva & al. 1980 ; Frank & 
Wunnenberg, 1989 ; Hou and Muller, 1994 ; Chen & al. 
1996), and recently for bilinear systems the bilinear 
fault detection observer (Yu & al. 1996) and a bilinear 
reduced-order observer (Hac, 1992 ; Yu & al. 1996). 
Another kind of method is the parity space method and 
analytic redundancy of parameters. As a result, a 
disadvantage of these methods is that they are not 
capable of isolating faults that have the same direction 
in the system state space [13]. 

The strategy of surveillance by the parameter estimation 
technique is based on available observation on the 
process state, which must provide information, which 
predict the origins of the faults. This approach is 
fundamentally based on the automatic concept and 
makes call to the developed techniques in identification. 

The diagnosis by the parameter estimation method uses 
the intermediate model called « Grey box »: 

Near to the knowledge model in order to preserve a 
trace of mechanisms explaining the working. 

Near to the representation model in order to use a 
simple structure, adapted to calculus of reasonable 
complexity. 

The parameter estimation method for fault diagnosis can 
detect and isolate faults, and may diagnose fault size, 
even for faults having the same direction in the state 
space of the model. A limitation to the parameter 
estimation method is that the number of physical 
parameters must be less than or equal to that of model 
parameters. This condition, however, can sometimes not 
satisfy in practice. In order to solve this practical 
problem, a combination of the system modelling and the 
hybrid parameter estimation method is considered in 
this paper. 

The failure detection based on compare of the real 
functioning of the system with which will be under the 
normal functioning hypothesis. The result of the 
detection procedure is a significant alarm that normal 
functioning model is not able to describe the real 
function of the supervised system. 
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2. SYSTEM IDENTIFICATION USING DELTA 
OPERATOR 

2.1 Model description in delta 

The shift operator z is used extensively in order to 
describe the discrete time systems. That conducts to 
undesirable casualties of the physical system, which 
constitutes a serious constraint. On this point of view, 
we can suspect which a best correspondence between 
the continuous and discrete time, which is obtained if 
the shift operator z is, replaced by an operator who is 
more similar a derivative ( )dtd . The use of an 
obtaining method of a continuous model with the help 
of delta operator can offer any advantages, respecting 
the model choice which is the result of compromise 
between its complexity and its aptitude to translate the 
behaviour of the studied system. 

In order to study the systems in the discrete and 
continuous cases together, we use the unified formalism 
which gives hybrid representation [4, 9], which that the 
discrete incremental difference (or delta) operator is 
defined by, 

T
z 1−

=δ  (1) 

Where z the forward shifts operator and T is the 
sampling interval. It can be seen that the delta operator 
is a form of the forward-difference formula [8], 

h
xfhxfxf )()()( −+

=&  (2) 

Which is used extensively in numerical analysis for 
computing the derivative of a function at a point. The 
use of the delta operator in the field of control 
engineering is not entirely new, Gawthrop introduced 
the idea of a hybrid control strategy based on the 
backward difference operator in 1980 whilst Goodwin 
& al. demonstrated the use of the operator in a model 
reference adaptive controller in 1986. The operator has 
also been shown to exhibit improved finite word length 
characteristics (Middleton & Goodwin) over its discrete 
time counterpart. 

The interest of this representation is the unified study of 
the continuous and discrete cases and the passage from 
the discrete case to the continuous case, by tending T 
toward zero. The choice of this representation is not 
only the presentation of the systems study in the 
continuous and discrete time, but especially the 
realisation of numerical treatment of quality: in fact, the 
systems advancing nearly always in the continuous 
time, their numerical treatment with the help of the shift 
operator z depends on sampled period T; otherwise, the 
delta operator permits a discrete representation near to 
the continuous model [1]. Consequently, more T is 
small, the approximation is better. The relationship 
between δ and z is a simple linear function, so δ offers 
the same flexibility of modelling of the systems as the 

shift operator of z. 

The dynamical behaviour of the systems can be 
introduce by an equation between the derivative δi of 
the input u(t) and the observed output y(t) writing in the 
invariable linear systems cases on time, 
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The estimation method that we will study in this paper 
basically depend on our ability to rearrange the model 
so that the predicted output describable as a linear 
function of a parameter vector θ: that is, there exists 
some vector of measured variables, ϕ(t), such that the 
model output can be expressed as, 

θϕ )()( tTty =  (4) 

When the generalised derivatives of y(t) and u(t) are 
available, then the model in (4) is immediately in the 
required form, where, 
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Effectively, we have linear model with regard to the 
parameters, but impracticable because explanatory 
variables y(t) and u(t) are not available. The principle is 
correct, but a previous filtering of data is necessary in 
order to achieve a transformation of model under a 
realist form. The methodology is called chain moments 
of Poisson, which that consists to use a stable nth-order 
filter ( )δE1  [9]. In practice, we prefer use a simple 
structure, depending of minimum parameters. For this 
reason, habitually we use, 

nE )()( ηδδ +=  (6) 

The choice of η conditions the bias, but also the 
convergence of the estimation. We can choose η in 
manner that ( )δE  approach to the better of ( )δA , for 
example according to the criterion of bandwidth. Then, 
the model becomes, 
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We obtain a linear model with regard to the parameters 
by a transformation of the original data to the filtered 
data, where an analogue relation to the equation (3), but 
realist because the variables )t(yf , )t(u f  are 
calculable, with, 
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It is interesting to note that the regression vector ϕ(t) for 
the proceeding two models can be readily generated via 
the following nth-order state space models, 
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2.2 Hybrid parameter estimation 

The estimation problem consists the parameter 
identification, which appears in the model by the 
treatment of the input/output data. We consider that θ 
the parameter vector, which can correctly traduce the 
dynamic behaviour of the process, and ϕ(t) the 
regression vector. The estimation consists to find a good 
estimate θ̂  of θ. The common measure of goodness of 
an estimate in the least squares cost function, 
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In this case, we can define the hybrid algorithm of the 
generalised least squared according to, 
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where, 

α(t) = a (time-varying) gain, α(t)∈[0 1]. 

Γ(t) = a (time-varying) normalisation term, Γ(t)>0. 

and where Ω(t) represents a modification to the 

“covariance” update, with: Ω(t) = ΩT(t) ≥ 0. 

The term covariance update is used since P(t) can be 
correspond to a covariance matrix under suitable 
conditions. For the least squares with forgetting factor, 
we use, 
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3. DIAGNOSIS 

The purpose of diagnosis is to determine the origin or 
the nature of the fault by using the knowledge of the 
system structure. In this paper, we have studied the 
statistical methods of detection based on the confidence 
interval. These methods generate detection test 
depending on confidence interval constructed on the 
statistical distributions of the residual. These residuals 
before reflect maximum information of faults. The 
redundancy among the measurements can be evaluated 
for the diagnosis with the general procedure: 

Choice of the degree confidence ξ necessary to the 
construction of the interval confidence. 

Choice of the liberty degree number of the considered 
statistical distribution. 

Generation of residuals i.e. functions that are made 
oversensitive to the fault. 

Decision concerning the faults and their isolation. 

If the fault occurs, the redundancy relations are no 
longer satisfied and one residual ε differs significantly 
from zero. The residual is then used to form an 
appropriate decision function. The basic idea of the 
hybrid estimation approach is to estimate the system 
parameters from all the measurements or subsets of 
measurements. We use the estimation error ε in (12) as 
a residual for the fault detection and isolation. 

To analyse these residuals, it was suggested to use a 
statistic test based on the transformed residual vector. 

3.1 Test based on χ2 distribution 

This test rests on the comparison of an estimated value 
ε2 at two threshold values delimiting the confidence 
interval. When the residual signal is the prediction error, 
this test equals to the whiteness test of the innovation. 
The ε2 value constructed on innovation e(k) written as, 
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And the detection test will be according to, 

failure No : )( 2,2, αα χβχ nnn k ≤≤−  

3.2 Test based on Fisher distribution 

The Fisher variable results to the report of two variables 
of ε2 divided by they number of freedom degrees. 
Consider the variances )k(s2

1  and )k(s2
2  of the 

estimated prediction error following two samples of 
different signal size, and normalised by their freedom 
degree n1 and n2 respectively. We obtain the following 
Fisher variable, 

)(
)()( 2

2

2
1

ks
kskF =  (15) 

And the detection test will be according to, 
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-1
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3.3 Test based on Student distribution 

The Student variable results to the report of two 
variables, one according to the normal distribution, 
centred and reduced, and the other according to Student 
distribution. By considering the prediction error and his 
estimated variance. The Student variable is defined as 
follow, 
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And the detection test will be according to, 

failure No : )( 2,2, αα nn SkSS ≤≤−  

With 2/:ξnS , the value of the Student distribution for a 

chosen confidence interval ξ and n, the size of the 
observation window. 

 

4. DESCRIPTION OF THE MLV SYSTEM 

The technology of the magnetic suspension is greatly 
more advanced until present; it is the international 
investigation subject [5]. Their application on the 
vehicles requires energy, elimination of the disturbances 
and the safety must be very important in order to 
contribute to the method success. The principal block 
diagram of MLV system is illustrated on Fig.1. 

The instantaneous flux linkage between the two 
magnetised bodies through the airgap z(t) is Φm; but if 
the magnet winding and geometry are such that 

mT Φ≅Φ , then the instantaneous magnet inductance 
may be expressed as [10], 
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Where RT is the reluctance of the entire magnetic circuit 
and N the coils or turns number. If the reluctance in the 
magnetic core is assumed to be negligible compared 
with the two airgaps (total length=2z(t)), then, 
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Where A is the magnet surface and µ0 is the electrical 
permeability. 
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Fig.1 : Electromagnet-track configuration 

 

Also the force of attraction at any instant of time is, 
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Where β is the density flux. Thus if R is the total 
resistance of the circuit then for an instantaneous 
voltage v(t) across the magnet winding, the excitation 
current is controlled by, 
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By using the notations in Fig.1, the force generated by 
the above excitation i(t) will control the vertical 
dynamics of the system, which, with reference to an 
absolute datum, is described by (fd(t)=disturbance force 
input), 

(20) 
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Where m is the mass of the suspended body and (i0, z0) 
denotes the equilibrium point. 

Exact analysis of the suspension dynamics would 
require numerical solution of equation (21), but a 
reasonably accurate linear model may be obtained by 
using linear approximations of the attraction force for 
excursions around the nominal equilibrium point (i0,z0). 
The small perturbation linear equations of the system 
are, 
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with, 
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Where L0 is the inductance of the magnet winding at 
(i0,z0), 
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The block diagram of the above linear system is given 
in Fig.2. The transfer function of the open-loop system, 
with fd(t)=0 is, 
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If the power amplifier has a wide enough bandwidth 
1Tm << , then an approximate form of open-loop 

characteristic equation is, 
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To derive the transfer function of the open-loop system, 
the parameters of the magnet at the equilibrium point 
need to be calculated. The nominal equilibrium for both 
magnets was chosen to be i0=2A and z0=1.5mm. The 
values of magnet constants at this point are given by [4], 

ki=44N/A, kz=58000N/m, m=3kg, R=7Ω, L0=33mH 

We can put the transfer function of the MLV system in 
the following form, 
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 is now in a form that 

enables a digital controller to be designed and 
implemented on a micro-controller. If however, the 
operator z is substituted using, 

1+= δTz  (30) 

The following transfer function of the MLV system is 
obtained, 
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We desire to estimate the parameter b0, a0 and a1 of the 
described model by the following polynomial equation, 
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For the filtering, we take η=300, 

01
22)300()( eeE ++=+= δδδδ  (34) 

We can have the model in the following form, 
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The equation (35) has the form, 
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where, 
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5. EXPERIMENTAL RESULTS 

The relationships between the system physical 
parameters and the model parameters according to (32) 
and (36) are, 
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It can be seen that the number of physical parameters in 
equation (38) is inferior than the of the model 
parameters, this facilitate the isolation. It result, 
therefor, that the changes in the physical parameters in 
(38) can be identified by detecting the changes in the in 
the model parameters. However, with the assistance of 
the statistic methods which gives the fault alarm, the 
faults can be diagnosed by estimating the groups of the 
physical parameters in (38) from the system delta model 
in (32). The recursive least square with forgetting factor 
was used to estimate a0, a1 and b0 on line. Furthermore, 
the size of a fault can be diagnosed if the estimation is 
precise. Let the confidence degree ξ=10%, which wants 
that the estimation makes with a confidence rate of 
90%. 

 

The set of faulty data simulates a change in efficient of 
resistance (parameter R) and a change in the efficient of 
inductance (parameter L0): 

200 t, 9.0LL , 9.0 00 >=∆=∆ RR  
Fig.3 describe the output and input measurement and 
the estimates of a0, a1 and b0 were obtained, and are 
shown in Fig.4, Fig.5 and Fig.6, and they decisions 
functions based on the statistical distribution ( 2χ , 
Fisher, Student) are shown in Fig.7, Fig.8 and Fig.9. 

The percentage decrease on a1 caused by ∆R is 
calculated as 47.0aa 11 =∆  and the percentage 
decrease on b0 caused by ∆L0 is 47.0bb 00 =∆  It is 
observed that the relative change in size of the estimated 
model parameter is approximately equivalent to the 
relative change in size of the physical parameter for 
both faults. Therefore, the fault size is diagnosed. 

Note that the physical parameters change for all the 
faults, due to the convergence of the estimates of the 
model parameters. Then it is consequently necessary in 
diagnosis to know the pertinent parameters precision; 
but more than the absolute precision, it is the relative 
precision between different parameters which allows to 
have a decision about the effective pertinence or about 
the manner to improving this precision, in particular, 
thanks to sensibilisants inputs. It is usually 
recommended to use a pseudo-random binary sequence 

(rich in information) in order to excite the system: this 
input assures the condition of persistent excitation and 
allows sensibilising all the modes of the system thanks 
to the width of its spectrum. 
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Fig.3. Voltage input and airgap 
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Fig.4. Estimate of a0 using least square algorithm with forgetting 
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Fig.5. Estimate of a1 using least square algorithm with forgetting 
factor 
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Fig.6. Estimate of b0 using least square algorithm with forgetting factor               Fig.7. Fault detection using χ2 distribution 
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Fig.8. Fault detection using Fisher distribution                                                      Fig.9. Fault detection using Student distribution 

 

6. CONCLUSION 

The hybrid parameter-estimation method is applied to a 
magnetic suspension system in order to detect the 
changes of the physical parameters by the surveillance 
of the model parameters. The method operates in 
combination with a statistical method, which gives the 
fault alarms. The aim of diagnosis is the surveillance, 
since of available information on the system, in order to 
detect and localise the failure, which affect the 
performances and security of system. Then, it is 
possible to generate the alarms, to providing of 
validated information about the system and eventually 
to pursuit the functioning conditions of system. Then, 
every failure can lead stops, where a service break and 
by consequence a production diminution. The 
simulation study suggests that the combination of 
different methods will be more efficient for fault 
diagnosis in real industrial systems. 
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Fig.2. Block diagram of the open-loop system 

a) Based on linearised state equations. 

b) Modified transfer function. 

 

 


