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ABSTRACT 

This paper addresses the attitude control problem for a twin rotor unmanned helicopter driven by DC motors. The control 

objective is to have the helicopter attitude, i.e., pitch and yaw angles, track specified angles. From the considered dynamics of 
the plant, it is observed that the main difficulty of the control problem is due to the existing nonlinear coupling effects between 

the two perpendicular rotors. Hence, an adaptive control approach based on the fuzzy-sliding mode controller is developed to 

solve the problem. In the controller design, firstly, the twin rotor multiple-input multiple-output system (TRMS) is decoupled  

into two single-input–single-output systems, and the cross couplings can be considered as disturbances to each other. Then, a 

fuzzy-sliding mode controller is designed for each of them. The stability of the overall closed-loop system is proven to be 

asymptotically stable based on the Lyapunov theorem. In order to demonstrate the applicability of the proposed control 

scheme, computer simulations is shown.  

. 
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1.     INTRODUCTION 

Helicopters have been widely used in air traffic systems, 

especially in urgent transportation needs such as medical 

treatment rescues and life-saving goods transportations. In 

addition, missions like ground detection, traffic condition 

assessment, smuggling prevention, and crime precautions 

heavily depend on using helicopters. The TRMS setup is 

designed by Feedback Instruments Ltd which has some 

resemblances with a helicopter [1]. For instance, like a 

helicopter it has a strong cross- coupling between the main 

and tail rotors. It is a highly nonlinear and complex system. 

Some of its states and outputs are inaccessible for 

measurements. Thus, from the control perspective, it can be 

perceived as a challenging problem. The control objective 

is to move the beam of the TRMS as quickly and accurately 

as possible to the desired attitudes in terms of both the pitch 

and yaw angles. 

In the literature, several research studies have been carried 

out for to design control systems for the TRMS test bed 

which most suggest a decoupling control scheme [2-14]. 

Some strategies ranging from classical to advanced and 

intelligent techniques have been developed [2–10]. For 

example, in [2] the pitch channel of the TRMS is 

considered for witch one degree of freedom inversion 

control is developed combined with an adaptive neural 

network to compensate for inversion errors.  Decoupling 

control of TRMS using deadbeat robust control technique is 

reported in reference [3]. In that investigation, the 

extracted model is decoupled into two single-input 

single-output (SISO) systems for which a proportional–

integral–derivative (PID)-based robust dead-beat 

controller has been applied. In [4, 5] authors presented the 

evolutionary computation based on genetic algorithm for 

the parameters optimization of the PID controller to the 

TRMS system. Model reference adaptive control for 

TRMS has been presented in reference [6], where a 

minimal controller synthesis (MCS) was utilized to TRMS 

system in decoupled control design. A comparison between 

classical control techniques and intelligent control based on 

fuzzy logic, and genetic algorithm is presented in [7]. In [8] 

parallel distributed fuzzy linear quadratic regulator 

controllers are designed to control the position of the pitch 

and yaw angles to cover various operating regions. All 

presented works consider the states of the TRMS available 

for measurement, however in [9] a predictive controller is 

developed where the states are estimated using unscented 

Kalman filter. 

The sliding mode control (SMC), characterized by its 

robustness against non-linearity and parametric variations 

and its effectiveness in disturbance rejection [10], has been 

also used for the control of the TRMS system such as [11-

14]. For instance, two-degree-of-freedom model for the 

TRMS is proposed using an optimal linear quadratic 

regulator (LQR) and a SMC in reference [11]. In [12-14] 

authors have applied a decentralized control method to a 

TRMS based on SMC. As the dynamics of TRMS pose 
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sufficient complexity as well as involve unknown 

nonlinearities, the main disadvantage of this control 

approach is its complexity, owing to the difficult 

differentiations of some complicated functions. In addition, 

implementing a sliding-mode controller in electrical 

systems is difficult because the chattering properties in 

high-frequency oscillations can damage the actuator.  

Motivated by the ability of adaptive SMC to deal with 

uncertain nonlinear systems to achieve excellent closed-

loop performance, an adaptive fuzzy-sliding mode 

control (AFSC) approach is developed for the TRMS. 

The advantage of controlling the system using the fuzzy 

logic technique is that the equivalent control laws derived 

of the model of the TRMS in [14], is approximated by a 

fuzzy system. In our design methodology, the TRMS is 

considered as a large-scale system which is decoupled 

into its vertical and horizontal two SISO subsystems. 

Then, an AFSMCs are designed for each subsystem 

which tuning laws are realised to deal with system 

uncertainty. Finally, the two controllers are applied to 

the original coupled TRMS. The stability of the overall 

closed-loop system is guaranteed based on the Lyapunov 

stability theory. The effectiveness of the proposed 

scheme is validated by simulations in which the 

proposed controller shows an excellent performance for 

both stabilization and tracking tasks. 

2   MODEL DESCRIPTION OF THE TRMS  

The TRMS, as shown in Fig. 1, is a laboratory test rig 

designed for control experiments by Feedback Instruments 

Limited [1]. Its behavior in certain aspects resembles that of  

a helicopter. This TRMS consists of a beam with main and 

tail rotors driven by direct current (DC) motors. The two 

rotors are controlled by variable speed electric motors 

enabling the TRMS to rotate in vertical plane (pitch denoted 

as 𝜃𝑣) and horizontal plane (yaw denoted 𝜃ℎ). The TRMS is 

constructed such that the angle of attack of the blades is 

fixed. Then, the aerodynamic force is controlled by varying 

the speed of the motors. The TRMS is characterized by 

cross-coupling (Fig. 2) complex dynamics, and it is noted 

that some of its states are not accessible for measurement. 

The dynamic model as supplied by the manufacturer [1] is 

given for vertical movement by the following equations: 

 

𝜃̇𝑣 = Ω𝑣 = S𝑣 +
𝐽𝑡𝑟𝜔𝑡

𝐽𝑣
  (1) 

 

Similarly, the horizontal movement is described by the 

following equations: 

 

 
 

 

where 𝜃𝑣(𝜃ℎ) is the pitch (yaw) angle of beam, Ω𝑣(Ωℎ) is 

the angular velocity around the vertical (horizontal) axis, 

𝜔𝑚(𝜔𝑡) is the rotational velocity of the main (tail) rotor, 

𝑆𝑣(𝑆ℎ) is the angular momentum in vertical (horizontal) 

plane of the beam, 𝐽𝑚𝑟(𝐽𝑡𝑟) is the moments of inertia in DC-

motor main (tail) propeller subsystem, 𝐽𝑣(𝐽ℎ) is the moment 

of inertia relative to vertical (horizontal) axis, and        

𝑘𝑣(𝑘ℎ) is the friction constant of the main (tail) propeller 

rotors and 𝑔 is gravitational acceleration,  𝐹𝑣( 𝐹ℎ) is the 

dependence of the propulsive forces on DC-motors 

rotational speeds. The definitions and numerical values of 

the different constants and parameters are given in appendix. 

The propulsive forces 𝐹𝑣 and 𝐹ℎ moving the joined beam in 

the horizontal and vertical direction, respectively, are 

described by a nonlinear functions of the angular velocity’s 

𝜔𝑚 and 𝜔𝑡  

 

 

 

where the rotational velocity 𝜔𝑚 and 𝜔𝑡  of main and tail 

propellers are a non-linear functions of a rotation angle 

of the main and tail DC motor  

 

𝑆̇𝑣 =
𝑙𝑚𝐹𝑣(𝜔𝑚)+𝑔((𝑎−𝑏) cos 𝜃𝑣−𝑒 sin 𝜃𝑣)−Ω𝑣𝑘𝑣+𝑔ℎ𝑣

𝐽𝑣
   (2) 

𝜃̇ℎ = Ωℎ = Sℎ +
𝐽𝑚𝑟𝜔𝑚 cos 𝜃𝑣

𝐽ℎ

 (3) 

𝑆̇ℎ =
𝑙𝑡𝐹ℎ(𝜔𝑡) cos 𝜃𝑣 − Ωℎ𝑘ℎ

𝐽ℎ

 (4) 

 𝐹𝑣(𝜔𝑚) = −3,48 ∙ 10−12𝜔𝑚
5 + 1,09 ∙ 10−9𝜔𝑚

4 + 4,123 ∙

10−6𝜔𝑚
3 − 1,632 ∙ 10−4𝜔𝑚

2 + 9,544 ∙ 10−2𝜔𝑚               (5) 

 𝐹ℎ(𝜔𝑡 ) = −3 ∙ 10−14𝜔𝑡
5 − 1,595 ∙ 10−11𝜔𝑡

4 + 2,511 ∙

10−7𝜔𝑡
3 − 1,808 ∙ 10−4𝜔𝑡

2 + 0,0801 ∙ 𝜔𝑡                        (6) 

Figure 01: Twin Rotor MIMO System 
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with the main and tail motors and their electric control 

circuit approximated by a first-order transfer function, and 

thus, in Laplace domain, the motor momentums are 

described by 

 

𝑑𝑢𝑣𝑣

𝑑𝑡
=

1

𝑇𝑚𝑟

(−𝑢𝑣𝑣 + 𝐾𝑚𝑟 𝑢𝑣) (9) 

𝑑𝑢ℎℎ

𝑑𝑡
=

1

𝑇𝑡𝑟

(−𝑢ℎℎ + 𝐾𝑡𝑟𝑢ℎ) (10) 

 

where 𝑢𝑣(𝑢ℎ) is the input voltage of the main (tail) DC 

motor, 𝑇𝑚𝑟 (𝑇𝑡𝑟 ) is the time constant of the main (tail) 

rotor and 𝐾𝑚𝑟 (𝐾𝑡𝑟) is the static gain of main (tail) DC 

motor. 

A block diagram representation of the TRMS model is 

shown in Fig. 2). It is suitable for using in the SIMULINK 

environment [1]. The block diagram in Fig. 3 shows that 

the TRMS is a large-scale system composed of two 

interconnected nonlinear subsystems representing the 

dynamics of TRMS in horizontal and vertical planes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective is to deal with the attitude stabilization of the 

TRMS beam in an arbitrary, within practical limits, desired 

position (yaw and pitch), or making it track a desired 

trajectory. Both goals may be achieved by means of the 

chosen controller of the next section. 

3 ADAPTIVE FUZZY-SLIDING MODE 

CONTROLLER DESIGN 

In this section, designing the adaptive fuzzy-sliding mode 

controller is considered. First, the TRMS model is 

decoupled into its two sub-models and considering the 

interconnections as model uncertainties and perturbations. 

Then a sliding mode control strategy is applied for each 

subsystem to achieve the control objective and to cancel the 

effect of the couplings. Finally, the adaptive fuzzy system is 

introduced to render the control laws of the TRMS system 

adaptive and independent of the model which the global 

stability is proved based on the Lyapunov theory. 

3.1     TRMS model decoupling 

Let us decouple the TRMS model where the sub-model in 

vertical plane is derived from the coupled model by setting 

the pitch angle 𝜃ℎ = 0 (𝑟𝑎𝑑) and putting 𝑢ℎ = 0 (𝑉) in 

equations (1) and (2) which leads to 𝜔𝑡 = 0. Thus, the 

model of the vertical subsystem of the TRMS is described 

by the following equations 

 

𝑑𝜃𝑣

𝑑𝑡
= Ω𝑣 (11) 

𝜔𝑚 = 𝑃𝑣(𝑢𝑣𝑣) = 90,99𝑢𝑣𝑣
6 + 599,73𝑢𝑣𝑣

5 − 129,26𝑢𝑣𝑣
4  

         −1238,64𝑢𝑣𝑣
3 + 63,45𝑢𝑣𝑣

2 + 1283,41𝑢𝑣𝑣               (7) 

𝜔𝑡 = 𝑃ℎ(𝑢ℎℎ) = 2020𝑢ℎℎ
5 − 194,69𝑢ℎℎ

4 − 4283,15𝑢ℎℎ
3  

          +262,27𝑢ℎℎ
2 + 3796,83𝑢ℎℎ                                    (8)    

Figure 02: The MIMO block diagram of the TRMS   

Cross-coupling 

Horizontal subsystem 

Vertical subsystem  

 

 
- 
- 

𝜃𝑣 Ω𝑣 

𝑆𝑣 𝑆̇𝑣 𝜔𝑚 

𝑢𝑣 

𝐽𝑚𝑟 cos(𝜃𝑣) 

𝑘𝑣 

1/𝑠 1/𝐽𝑣 1/𝑠 

𝑔((𝑎 − 𝑏) cos 𝜃𝑣 − 𝑐 sin 𝜃𝑣) 

𝐹𝑣 𝑙𝑚 

- 

𝜔𝑡  𝑆̇ℎ 𝑆ℎ 𝜃ℎ 

Ωℎ 

𝑢ℎ 

𝐽𝑡𝑟 

𝑔ℎ𝑣 

𝑘ℎ 

1/𝑠 1/𝐽ℎ 1/𝑠 𝐹ℎ 𝑙𝑡 cos(𝜃𝑣) 

DC-motor with 

main rotor 

𝐾𝑚𝑟

𝑇𝑚𝑟𝑠 + 1
 𝑃𝑣 

𝑢𝑣𝑣 

DC-motor with 

tail rotor 

𝐾𝑡𝑟

𝑇𝑡𝑟𝑠 + 1
 𝑃ℎ 

𝑢ℎℎ 
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𝑑Ω𝑣

𝑑𝑡
=

𝑙𝑚𝐹𝑣 (𝜔𝑚 )−Ω𝑣𝑘𝑣+𝑔((𝐴−𝐵) cos 𝜃𝑣+𝐶 sin 𝜃𝑣)

𝐽𝑣
  (12) 

 

where 𝐹𝑣 and 𝜔𝑚 are given by (5) and (7) respectively. 

In the same way as the vertical sub-model, the horizontal 

sub-model is obtained by setting the yaw angle 𝜃𝑣 =

𝜃𝑣0 (𝑟𝑎𝑑) and putting 𝑢𝑣 = 0 (𝑉) in equation (3) and (4) 

which leads to 𝜔𝑚 = 0. Hence, the following equations 

describe the horizontal model : 

𝑑𝜃ℎ

𝑑𝑡
= Ωℎ  (13) 

𝑑Ωℎ

𝑑𝑡
=

𝑙𝑡𝐹ℎ(𝜔𝑡) cos(𝜃𝑣0)−𝐾ℎΩℎ

𝐽ℎ0
  (14) 

where  𝐽ℎ0 = 𝐷 sin2 𝜃𝑣0 + 𝐸 cos2 𝜃𝑣0 + 𝐹 , 𝐹ℎ and 𝜔𝑡  are 

given by (6) and (8) respectively.  

To handle the parametric uncertainties and interaction 

between subsystems, the horizontal sub-model is extended 

with lumped disturbance torque 𝜓𝑣  acting on the pitch axe, 

and satisfies the following inequalities  

|𝜓𝑣| ≤ 𝛿𝑣 and |𝜓̇𝑣| ≤ 𝜂𝑣  (15) 

Where 𝛿𝑣 and 𝜂𝑣  are known positive constants. As a result, 

using equations (9), (11) and (12), the extended nonlinear 

state space representation of the vertical sub-model is given 

by 

𝑥̇𝑣 = [
𝜃̇𝑣

Ω̇𝑣

𝑢̇𝑣𝑣

] = [
Ω𝑣

𝛼𝑣(𝑢𝑣𝑣 ) − 𝑎𝑣Ω𝑣 + 𝛽𝑣(𝜃𝑣) + 𝑑𝑣𝜓𝑣

−𝑐𝑣𝑢𝑣𝑣

]

+ [
0
0
𝑏𝑣

] 𝑢𝑣 

 

 

 

(16) 

where 𝑥𝑣 = [𝜃𝑣 , Ω𝑣 , 𝑢𝑣𝑣]𝑇 a state vector of vertical 

subsystem and 𝑢𝑣 is their input control, with  

𝑎𝑣 =
𝐾𝑣

𝐽𝑣
, 𝑏𝑣 =

𝐾𝑚𝑟

𝑇𝑚𝑟
,  𝑐𝑣 =

1

𝑇𝑚𝑟
, 𝑑𝑣 =

1

𝐽𝑣
, 𝛼𝑣(𝑢𝑣𝑣 ) =

𝑙𝑚

𝐽𝑣
𝐹𝑣 (𝑃𝑣(𝑢𝑣𝑣 )) and 𝛽𝑣(𝜃𝑣) =

𝑔

𝐽𝑣
((𝐴 − 𝐵) cos 𝜃𝑣 + 𝐶 sin 𝜃𝑣 ),  

Similarly to the horizontal sub-model, using (10), (13) and 

(14) the nonlinear state space representation of the vertical 

sub-model is extended with bounded lumped disturbance 

torque 𝜓ℎ acting on the pitch axe, and satisfy the following 

inequalities  

|𝜓ℎ| ≤ 𝛿ℎ and |𝜓̇ℎ| ≤ 𝜂ℎ (17) 

Where 𝛿ℎ and 𝜂ℎ are known positive constants 

Hence, the extended nonlinear state space vertical sub-

model can be written as 

𝑥̇ℎ = [
𝜃̇ℎ

Ω̇ℎ

𝑢̇ℎℎ

] = [
Ωℎ

𝛼ℎ(𝑢ℎℎ ) − 𝑎ℎΩℎ + 𝑑ℎ𝜓ℎ

−𝑐ℎ𝑢ℎℎ

]

+ [
0
0
𝑏ℎ

] 𝑢ℎ 

 

 

 

(18) 

where 𝑥ℎ = [𝜃ℎ , Ωℎ , 𝑢ℎℎ]𝑇 is a state vector of horizontal 

subsystem and 𝑢ℎ is their input control, with   

𝑎ℎ =
𝐾𝑣

𝐽ℎ0
 , 𝑏ℎ =

𝐾𝑡𝑟

𝑇𝑡𝑟
,   𝑐ℎ =

1

𝑇𝑡𝑟
  𝑑ℎ =

1

𝐽ℎ0
 and  𝛼ℎ(𝑢ℎℎ ) =

𝑙𝑡

𝐽ℎ0
𝐹ℎ (𝑃ℎ(𝑢ℎℎ )).  

These disturbance torques, i.e. 𝜓𝑣  and 𝜓ℎ, account for 

bounded interactions between the two subsystems, 

parametric uncertainty, unmodelled dynamics and all 

disturbances affecting the system. Among these are non-

modelled effects due to the supply cables and gyroscopic 

torques as well as the couplings caused by the tail rotor and 

the main rotor in the case of angular accelerations of the 

propellers.  

3.2      Sliding mode controllers of the TRMS 

The sliding mode controller is already developed by [14] to 

control a TRMS system in decentralized scheme which 

consisting of two interconnected SISO subsystem, 

horizontal and vertical. However, in this present work, the 

proof of singularity of the control laws is studied which 

makes its implementation possible. In addition, the 

proposed control laws have adaptive control gains in order 

to eliminate the chattering problem. 

Let 𝑒𝑣 and 𝑒ℎ denote the errors between the measured and 

the desired trajectories (denoted with a subscript *) for the 

yaw angle and the pitch angle according to  

Accurate tracking of desired trajectories for the pitch angle 

and the yaw angle and be achieved by the following choice 

of the sliding surfaces 

where 𝑛𝑖  is the relative degree of each subsystem, i.e. the 

degree of the vertical and horizontal sub-model, 𝜆𝑖 is the 

positive constant characterizing the dynamics of the sliding 

surfaces. Here, The sliding mode control can be divided into 

two phases: the sliding phase with 𝑆𝑖(𝑥𝑖) = 0, 𝑆̇𝑖(𝑥𝑖) = 0 

𝑒𝑣 = 𝜃𝑣 − 𝜃𝑣
∗ and 𝑒ℎ = 𝜃ℎ − 𝜃ℎ

∗  (19) 

𝑆𝑖(𝑥𝑖) = (
𝑑

𝑑𝑡
+ 𝜆𝑖)

𝑛𝑖−1

𝑒𝑖, 𝑖 ∈ [𝑣, ℎ] (20) 
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and the reaching phase with 𝑆𝑖(𝑥𝑖) ≠ 0. The control input 

during the ideal sliding mode represents the equivalent 

control 𝑢𝑒𝑞,𝑖 , whereas an additional switching control 

action 𝑢𝑠𝑤 ,𝑖 provides a finite-time convergence to the 

sliding surfaces during the reaching phase. Subsequently, 

the overall control input 𝑢𝑖  can be expressed as the sum 

of both terms 

 

The differentiation of the sliding surfaces 𝑆𝑣  and 𝑆ℎ  with 

respect to time, and for 𝑛𝑣 = 𝑛𝑣 = 3, results in 

𝑆̇𝑣(𝑥𝑣) = 𝜃𝑣 − 𝜃𝑣
∗+ 2𝜆𝑣(𝜃̈𝑣 − 𝜃̈𝑣

∗)+𝜆𝑣
2(𝜃̇𝑣 − 𝜃̇𝑣

∗) (22) 

𝑆̇ℎ(𝑥ℎ) = 𝜃ℎ − 𝜃ℎ
∗+ 2𝜆ℎ(𝜃̈ℎ − 𝜃̈ℎ

∗)+𝜆ℎ
2 (𝜃̇ℎ − 𝜃ℎ

∗̇) (23) 

The sliding condition implies that in steady state, for both 

subsystems, the output trajectory at all-time remain on the 

sliding surfaces, 𝑆𝑣(𝑥𝑣) = 0 and 𝑆ℎ(𝑥ℎ) = 0.  By 

choosing strictly positive coefficients of the Hurwitz 

polynomial, it can be ensured that the closed-loop 

subsystems are asymptotically stable during the ideal 

sliding mode. In this case, the error dynamics is 

governed by 

where the strictly positive coefficients  𝜆𝑣 > 0 and 𝜆ℎ > 0 

has to be chosen so as to make the characteristic equation 

(24) Hurwitz for both vertical and horizontal subsystems.  

Then the pitch and yaw angles of the TRMS track 

exponentially their desired tracking signals. 

Firstly, for the vertical subsystem, substituting the value of 

𝜃𝑣 from (16) into (22), the rate of change 𝑆̇𝑣  can be 

expressed as 

Where 𝐷𝑥
(𝑙)

𝑦 = 𝜕𝑙𝑦/𝜕𝑥𝑙 denote 𝑙th partial order derivative   

of 𝑦 with respect to 𝑥. Thus, 𝐷𝑢𝑣𝑣

(1)
𝛼𝑣 and 𝐷𝜃𝑣

(1)
𝛽𝑣 are 

calculated according to:  

𝐷𝑢𝑣𝑣

(1)
𝛼𝑣 = 𝜕𝛼𝑣/𝜕𝑢𝑣𝑣 =

𝑙𝑚

𝐽𝑣
∇𝑣 , and 

 ∇𝑣= (𝜕𝐹𝑣/𝜕𝐹𝜔𝑚)(𝜕𝑝𝑣/𝜕𝑢𝑣𝑣) 

𝐷𝜃𝑣

(1)
𝛽𝑣 = 𝜕𝛽𝑣/𝜕𝜃𝑣 =

𝑔

𝐽𝑣
((𝐵 − 𝐴) sin 𝜃𝑣 + 𝐶 cos 𝜃𝑣).  

In the case where the dynamic sub-models of the TRMS are 

assumed to be totally independent, i.e. without any 

modelling uncertainties and any effect of interactions 

between subsystems. Hence, for vertical subsystems with 

𝜓𝑣 = 0, and by setting 𝑆̇𝑣 (𝑥𝑣) = 0 in equation (25), the 

equivalent control input voltage for vertical subsystem is 

obtained: 

𝑢𝑒𝑞,𝑣 =
−1

𝑏𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣

[𝜐𝑣 − 𝑐𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣𝑢𝑣𝑣 − 𝑎𝑣(𝛼𝑣 + 𝛽𝑣) +

                                              + (𝐷𝜃𝑣

(1)
𝛽𝑣 + 𝑎𝑣

2) Ω𝑣]             (26) 

where 𝜐𝑣  is the equivalent control input corresponds to the 

ideal motions of the vertical subsystem on the sliding 

surfaces 𝑆𝑣(𝑥𝑣) = 0, with  

The obtained equivalent control for vertical subsystem is 

non-singular iff the term ∇𝑣along the operating space is 

nonzero, that is, is either positive or negative: ∇𝑣≠ 0. Since 

∇𝑣  is computed in terms of 𝜔𝑚  and 𝑢𝑣𝑣  by using equations 

(5) and (7), its dynamics evolution is shown in Fig. 3. It is 

clear that ∇𝑣> 0 which is the requirement condition to 

ensure the non-singularity, and hence to apply sliding mode 

control to the vertical subsystem.  

Similar to the vertical sub-model, substituting the value of 

𝜃ℎ from (18) into (23), the rate of change 𝑆̇ℎ  can be 

written as 

where 𝐷𝑢ℎℎ

(1)
𝛼ℎ is partial derivative of 𝛼ℎ with respect to 𝑢ℎℎ 

calculated according to:  

𝐷𝑢ℎℎ

(1)
𝛼ℎ = 𝜕𝛼ℎ/𝜕𝑢ℎℎ =

𝑙𝑡

𝐽ℎ0
∇ℎ and  

∇ℎ= (𝜕𝐹ℎ/𝜕𝐹𝜔𝑡 )(𝜕𝑝ℎ/𝜕𝑢ℎℎ) 

For any modelling uncertainties and any effect of 

interactions between sub-systems so that 𝜓ℎ = 0 and by 

setting 𝑆̇ℎ(𝑥ℎ) = 0 in equation (35), the equivalent control 

input voltage for horizontal subsystem is obtained 

 𝑢𝑒𝑞,ℎ =
−1

𝑏ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ

[𝜐ℎ − 𝑐ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ𝑢ℎℎ − 𝑎ℎ(𝛼ℎ − 𝑎ℎΩℎ)]                                                                                   

                                                                                  (29)  

𝑢𝑖 = 𝑢𝑒𝑞,𝑖 + 𝑢𝑠𝑤 ,𝑖 , 𝑖 ∈ [𝑣, ℎ] (21) 

𝑒̈𝑖 + 2𝜆𝑖𝑒𝑖 + 𝜆𝑖
2𝑒𝑖 = 0 ,  𝑖 ∈ [𝑣, ℎ] (24) 

𝑆̇𝑣(𝑥𝑣) = 2𝜆𝑣 𝑒̈𝑣 + 𝜆𝑣
2𝑒̇𝑣 − 𝜃𝑣

∗ − 𝑐𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣𝑢𝑣𝑣

+ 𝑏𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣𝑢𝑣 − 𝑎𝑣(𝛼𝑣 + 𝛽𝑣)

+ (𝐷𝜃𝑣

(1)
𝛽𝑣 + 𝑎𝑣

2) Ω𝑣

+ 𝑑𝑣(𝜓̇𝑣 − 𝑎𝑣𝜓𝑣) 

 

 

 

 

(25) 

𝜐𝑣 = 𝜃𝑣
∗ − 𝜆𝑣

2𝑒̇𝑣 − 2𝜆𝑣𝑒̈𝑣 (27) 

𝑆̇ℎ(𝑥ℎ) = 2𝜆ℎ𝑒̈ℎ + 𝜆ℎ
2 𝑒̇ℎ − 𝜃ℎ

∗ − 𝑐ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ𝑢ℎℎ

+ 𝑏ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ𝑢ℎ − 𝑎ℎ(𝛼ℎ − 𝑎ℎΩℎ)

+ 𝑑ℎ(𝜓̇ℎ − 𝑎ℎ𝜓ℎ) 

 

 

 

(28) 
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where 𝜐ℎ  is the equivalent control input corresponds to the 

ideal motions of the horizontal subsystem on the sliding 

surface 𝑆ℎ(𝑥ℎ) = 0, with  

𝜐ℎ = 𝜃ℎ
∗ − 𝜆ℎ

2 𝑒̇ℎ − 2𝜆ℎ𝑒̈ℎ (30) 

The obtained equivalent control for horizontal subsystem is 

non-singular iff the term ∇ℎalong the operating space is 

nonzero, that is, is either positive or negative: ∇ℎ≠ 0. Since 

∇ℎ  is computed in terms of 𝜔𝑡  and 𝑢ℎℎ  by using equations 

(6) and (8), its dynamics evolution is shown in Fig. 4. It is 

clear that ∇ℎ> 0 which is the requirement condition to 

ensure the non-singularity, and hence to apply sliding mode 

control to the vertical subsystem.  

However, when the initial states are not located on the 

sliding surfaces and under the effect of disturbances, it is 

evident that the obtained equivalent controls laws (26) and 

(29) cannot be guarantee the stability of the closed-loop 

system and the boundedness of tracking errors.  

So, an additional switching control part 𝑢𝑠𝑤,𝑖 , 𝑖 = 𝑣, ℎ to be 

designed in the next step brings the state back to the sliding 

surfaces – the reaching phase – and keeps it on the surfaces 

𝑆𝑖(𝑥𝑖) = 0 despite disturbances and uncertainties. So, the 

global control input voltages 𝑢ℎ and  𝑢ℎ are changed as 

follows: 

𝑢𝑣 =
−1

𝑏𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣

[𝜐𝑣 − 𝑐𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣𝑢𝑣𝑣 − 𝑎𝑣(𝛼𝑣 + 𝛽𝑣)

+ (𝐷𝜃𝑣

(1)
𝛽𝑣 + 𝑎𝑣

2) Ω𝑣

+ 𝐾𝑣𝑠𝑔𝑛(𝑆𝑣)] 

 

 

 

(31) 

𝑢ℎ =
−1

𝑏ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ

[𝜐ℎ − 𝑐ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ𝑢ℎℎ

− 𝑎ℎ(𝛼ℎ − 𝑎ℎΩℎ)

+ 𝐾ℎ𝑠𝑔𝑛(𝑆ℎ )] 

 

 

(32) 

 

 

 

 

where 𝐾𝑣 and 𝐾ℎ are the adaptive control gains their 

updating laws will be given later in order to reduce the 

chattering phenomenon and guarantee the stability of the 

closed-loop system. 

3.3      Stability analysis 

To prove the asymptotic stability of the closed-loop system 

using the proposed decentralized sliding mode controller, 

let a Lyapunov function for the closed-loop system be 

chosen as 

𝑉 =
1

2
𝑆𝑣

2 +
1

2
𝑆ℎ

2 +
1

2𝛾𝑣
𝐾𝑣

2 +
1

2𝛾ℎ
𝐾ℎ

2                              (33) 

where 𝛾𝑣  and 𝛾ℎ are any positive constants. By taking the 

time derivative of  𝑉, it is readily obtained that  

𝑉̇ = 𝑆𝑣 𝑆̇𝑣 + 𝑆ℎ 𝑆̇ℎ +
1

𝛾𝑣
𝐾𝑣𝐾̇𝑣 +

1

𝛾ℎ
𝐾ℎ𝐾̇ℎ                       (34) 

With substitution the expressions of (25), (28), (31) and 

(32), into (34), the following form is obtained 

Considering the assumptions made on the disturbances 

torques, then simply  
 

𝑉̇ ≤ 𝑑𝑣(𝜂𝑣 − 𝑎𝑣𝛿𝑣)|𝑆𝑣| + 𝑑ℎ(𝜂ℎ − 𝑎ℎ𝛿ℎ)|𝑆ℎ| 

+𝐾𝑣 (
1

𝛾𝑣
𝐾̇𝑣 − |𝑆𝑣|) + 𝐾ℎ (

1

𝛾ℎ
𝐾̇ℎ − |𝑆ℎ|) (36)    

By choosing the following adaptations laws: 

𝐾̇𝑣 = 𝛾𝑣|𝑆𝑣|                                                                       (37) 

𝑉̇ = 𝑆𝑣 (𝑑𝑣(𝜓̇𝑣 − 𝑎𝑣𝜓𝑣) − 𝐾𝑣𝑠𝑔𝑛(𝑆𝑣))    

+ 𝑆ℎ (𝑑ℎ(𝜓̇ℎ − 𝑎ℎ𝜓ℎ)

− 𝐾ℎ𝑠𝑔𝑛(𝑆ℎ)) +
1

𝛾𝑣

𝐾𝑣𝐾̇𝑣

+
1

𝛾ℎ

𝐾ℎ𝐾̇ℎ 

 

 

 

 

 

(35) 

Figure 03: Dynamics evolution of  𝜵𝒗 in terms of 𝝎𝒎 and 𝒖𝒗𝒗 . Figure 04: Dynamics evolution of  𝜵𝒉 in terms of 𝝎𝒕and 𝒖𝒉𝒉. 
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𝐾̇ℎ = 𝛾ℎ|𝑆ℎ|                                                                      (38) 

The derivative of 𝑉 becomes: 

𝑉̇ ≤ 𝑑𝑣(𝜂𝑣 − 𝑎𝑣𝛿𝑣)|𝑆𝑣| + 𝜀ℎ𝑑ℎ(𝜂ℎ − 𝑎ℎ𝛿ℎ)|𝑆ℎ|   (39) 

From equation (39) it can be concluded that the reaching 

condition and hence the stability of wool closed-loop system 

is obtained from 𝑎𝑣 > 𝜂𝑣𝛿𝑣
−1  and 𝑎ℎ > 𝜂ℎ𝛿ℎ

−1. Therefore, 

by invoking Barbalat’s lemma and Lyapunov theorem, all 

the signals inside the closed-loop system are bounded, 

and 𝑆𝑣 , 𝑆ℎ , 𝑒𝑣, 𝑒ℎwill converge to zero asymptotically. 

3.4     Fuzzy controllers  

In this section, in order to eliminate the chattering problem 

and the dependence of control laws at parametric 

uncertainty of system, an adaptive fuzzy compensator is 

used to estimate de non-linearity functions in sliding mode 

controllers. Combining the Fuzzy Logic Control (FLC) 

with the adaptive SMC in equations. (31) and (32) results in 

developing the proposed AFSMC methodology [15].  The 

main advantage of this method is that the robust behavior of 

the system is guaranteed. The second advantage of the 

proposed AFSMC is that the performance of the system in 

the sense of removing chattering is improved in comparison 

with the same SMC technique without using FLC [16]. 

The output of the fuzzy system is calculated as [17]: 

𝑦̂𝐹𝐶 = 𝜃𝐹𝐶
𝑇 𝜓𝐹𝐶(𝑥) (40) 

where the 𝜃𝐹𝐶 = [𝜃𝐹𝐶
1 , … , 𝜃𝐹𝐶

𝑁 ]
𝑇

is the vector parameters and 

𝜓𝐹𝐶(𝑥) is he regressor vector of the proposed fuzzy model 

given as follows: 

𝜓𝐹𝐶(𝑥) = [𝜑𝐹(𝑥1), … , 𝜑𝐹(𝑥𝑛)]𝑇 (41) 

where 𝜑𝐹(∙)  denotes the fuzzy basis functions calculated 

according to: 

𝜑𝐹(𝑥𝑖) =
∏ 𝜇

𝐴𝑖
𝑙 (𝑥𝑖)

𝑛
𝑖=1

∑ (∏ 𝜇𝐴𝑖
𝑙 (𝑥𝑖)

𝑛
𝑖=1 )𝑀

𝑙=1

 (42) 

where 𝜇
𝐴𝑖

𝑙 (𝑥𝑖) are the membership functions of fuzzy sets 

𝐴𝑖
𝑙, 𝑖 = 1,..,n, 𝑙 = 1, … 𝑀 which are selected generally as 

Gaussian membership functions. It has been proven that 

fuzzy systems in the form of (40) can approximate 

continuous function on a compact domain to an arbitrary 

degree of accuracy if enough number of rules is given. 

To counteract the effect of switching actions introduced by 

the 𝑠𝑔𝑛 function, a smooth switching functions 𝑡𝑎𝑛ℎ(𝑆𝑖/

𝜀𝑖) with a strictly positive constant 𝜀𝑖, influencing a 

boundary layer thickness, are utilized. The chattering 

reduction depends on value of 𝜀𝑖 at the cost of robustness. 

Hence, the input control voltages of the TRMS becomes  

𝑢̂𝑣 =
−1

𝑓1𝑣(𝑥𝑣)
[𝜐𝑣 − 𝑓2𝑣(𝑥𝑣) + 𝐾𝑣𝑡𝑎𝑛ℎ(𝑆𝑣 /𝜀𝑣)] (43) 

 

𝑢̂ℎ =
−1

𝑓1ℎ(𝑥ℎ)
[𝜐ℎ − 𝑓2ℎ(𝑥ℎ) + 𝐾ℎ𝑡𝑎𝑛ℎ(𝑆ℎ/𝜀ℎ)]  (44) 

 

where 𝑓1𝑣(𝑥𝑣), 𝑓2𝑣(𝑥𝑣), 𝑓1ℎ(𝑥ℎ) and 𝑓2ℎ(𝑥ℎ) are the fuzzy 

approximators of nonlinear functions 𝑏𝑣𝐷𝑢𝑣𝑣

(1)
𝛼𝑣, 

𝑐𝑣 𝐷𝑢𝑣𝑣

(1)
𝛼𝑣𝑢𝑣𝑣 + 𝑎𝑣(𝛼𝑣 + 𝛽𝑣) − (𝐷𝜃𝑣

(1)
𝛽𝑣 + 𝑎𝑣

2) Ω𝑣, 𝑏ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ 

and 𝑐ℎ𝐷𝑢ℎℎ

(1)
𝛼ℎ𝑢ℎℎ + 𝑎ℎ(𝛼ℎ − 𝑎ℎΩℎ) respectively, with 

𝑓1𝑣(𝑥𝑣) = 𝜃1𝑣
𝑇 𝜓𝑣(𝑥𝑣) 

𝑓2𝑣(𝑥𝑣) = 𝜃2𝑣
𝑇 𝜓𝑣(𝑥𝑣)

𝑓1ℎ(𝑥ℎ) = 𝜃1ℎ
𝑇 𝜓ℎ(𝑥ℎ)

𝑓2ℎ(𝑥ℎ) = 𝜃2ℎ
𝑇 𝜓ℎ(𝑥ℎ)

                              (45) 

The parameters 𝜃1𝑣, 𝜃2𝑣 , 𝜃1𝑣 and 𝜃2𝑣 are optimized 

adaptively during the control process so that the stability of 

closed-loop system is proved using Lyapunov method [18]. 

This can be achieved if the following update law is 

adopted: 

𝜃1𝑣 = −𝛼1𝑉 ∫ 𝑦
𝑒𝑣

(𝑡)𝜓𝑣(𝑥𝑣)𝑑𝑡
𝑡

0
− 𝛽1𝑉𝑦

𝑒𝑣
(𝑡)𝜓𝑣(𝑥𝑣) 

𝜃2𝑣 = −𝛼2𝑣 ∫ 𝑦
𝑒𝑣

(𝑡)𝜓𝑣(𝑥𝑣)𝑑𝑡
𝑡

0
− 𝛽2𝑉 𝑦

𝑒𝑣
(𝑡)𝜓𝑣(𝑥𝑣)

𝜃1ℎ = −𝛼1ℎ ∫ 𝑦
𝑒ℎ

(𝑡)𝜓ℎ(𝑥ℎ)𝑑𝑡
𝑡

0
− 𝛽1ℎ𝑦

𝑒ℎ
(𝑡)𝜓ℎ(𝑥ℎ)

𝜃2ℎ = −𝛼2ℎ ∫ 𝑦
𝑒ℎ

(𝑡)𝜓ℎ(𝑥ℎ)𝑑𝑡
𝑡

0
− 𝛽2ℎ𝑦

𝑒ℎ
(𝑡)𝜓ℎ(𝑥ℎ)

   (46) 

where 𝑦𝑒𝑖 = 𝑒𝑇𝑃𝑛𝑖, and 𝑃𝑛𝑖 = 𝛤𝑃𝑖 for 𝑖 = 𝑣, ℎ is the last 

column of the Lyapunov matrix 𝑃𝑖. 𝛼𝑖𝑉, 𝛼𝑖ℎ, 𝛽1𝑉 and 𝛽𝑖ℎ, 

𝑗 = 1,2 are positive adaptation weights [19]. 

The block diagram of the TRMS control system with the 

proposed controllers is shown in Fig. 5. 

4         SIMULATION RESULTS 

To show the performance of the proposed control scheme, 

simulations tests on the phenomenological model of the 

TRMS system are carried out, with the parameters given in 

Table A1 (Appendix). 
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Different reference signals are used for regulation and the 

tracking problems following different scenarios presented 

in [12]. Where all tests are performed using the same initial 

states 𝑥𝑣 = [−0.63, 0, 0]𝑇 and 𝑥ℎ = [0, 0, 0]𝑇  which 

represent the static equilibrium point at rest with stopped 

main and tail DC-motors. In addition, robustness of these 

controllers against external disturbances and changes in the 

system parameters will be evaluated. 

The design parameters are chosen for both horizontal and 

vertical controllers as 𝛼𝑖𝑉 = 𝛽𝑖𝑉 = 0.1 for 𝑖 = 1,2, 𝛾𝑣 =

𝛾ℎ = 2.5 and 𝜀𝑣 = 𝜀ℎ = 0.5. These values have been 

determined through numerical simulation tests, and were 

found to work well under all conditions. Considering the 

value of 𝑎𝑣 and 𝑎ℎ with the range of interest of disturbance 

torques acting on the TRMS system, it is reasonable to 

assume that the stability conditions are fulfilled. The 

membership functions for system state 𝑥𝑖 for 𝑖 =  𝑣, ℎ are 

chosen as : 

 𝜇𝐹1
1 (𝑥𝑖) = 1/(1 + 𝑒𝑥𝑝 (11(𝑥𝑖 + 1)),  

𝜇𝐹1
2(𝑥𝑖) = exp {−(𝑥𝑖 + 0.3)2},  

𝜇𝐹1
3(𝑥1) = exp {−(𝑥𝑖)

2},  

𝜇𝐹1
4(𝑥𝑖) = exp {−(𝑥𝑖 − 0.3)2},  

𝜇𝐹1
5(𝑥1) = 1/(1 + 𝑒𝑥𝑝 (−11(𝑥𝑖 − 1)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In simulation tests using MATLAB and Simulink, the 

proposed controllers have proven to be reliable with respect 

to different reference signals that cover various operating 

regions. The TRMS responses are sketched in Figs. 6 to 9. 

Fig. 6 shows the responses of the control system according 

to square reference signals with different frequencies for 

pitch and yaw angles. Fig. 7 depicte the performance of the 

controller for sine reference signals with different 

frequencies. Fig. 8 gives the angles responses of the TRMS, 

with respect to different reference signals with different 

frequencies to show the effectiveness of the proposed 

control system to deal with different interactions of the two 

channels. 

To evaluate the robustness of the controller, parametric 

variations and external disturbances were introduced. The 

parametric variation is introduced by changing the position 

of the counterweight shown in Fig. 1 in the pendulum 

counterweight. For the external disturbances, an external 

force is applied to the system at 40 and lasts for 100 sec. 

The results of a sinusoidal reference signal tracking is 

depicted in Fig. 9 which shows that the controller is 

immune against parameter variations and recovers 

adequately for the external perturbation. The peaking 

phenomenon appears in the input voltages 𝑢𝑣 and 𝑢ℎ, as 

show in Fig. 9(c) and (d), represents the transient of the 

adaptation to compensate the sudden change of TRMS 

angles caused by perturbations. 

 

 

 

 

Figure 05 : Block diagram of the proposed adaptive fuzzy-sliding mode (AFSM) controller scheme for TRMS system. 
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Figure 06: Simulation results for square wave references. (a) pitch angle 𝜽𝒗  (solid line) and reference 𝜽𝒗
∗  (dotted line), (b) yaw 

angle 𝜽𝒉 (solid line) and reference 𝜽𝒉
∗  (dotted line), (c) main input voltage, (d) tail input voltage. 

Figure 07: Simulation results for sine wave references. (a) pitch angle 𝜽𝒗  (solid line) and reference 𝜽𝒗
∗  (dotted line), (b) yaw 

angle 𝜽𝒉 (solid line) and reference 𝜽𝒉
∗  (dotted line), (c) main input voltage, (d) tail input voltage. 
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Figure 08: Angles responses for differences frequencies. (a) square wave reference for pitch angle, (b) and (c) sine wave 

reference for pitch and yaw angles, (d) sawtooth wave reference for yaw angle. 

  

  

  

   

Figure 09: Simulation results for sine wave references in robust test. (a) pitch angle 𝜽𝒗  (solid line) and reference 𝜽𝒗
∗  (dotted 

line), (b) yaw angle 𝜽𝒉 (solid line) and reference 𝜽𝒉
∗  (dotted line), (c) main input voltage, (d) tail input voltage. 
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5          CONCLUSION 

In this investigation, an adaptive fuzzy-sliding mode 

controller (AFSMC) has been developed to the TRMS 

system whose dynamics resemble that of a helicopter. The 

extracted model of TRMS has been decoupled into two 

SISO systems which the proposed AFSMC is applied for 

each of them. This approach does not require a good 

knowledge of the model and is simple to implement. It 

leads to a very quick and efficient optimization technique.  

The components of the control laws for the two subsystems 

are derived through Lyapunov stability analysis. This 

design can tolerate the effect of system parameter variations 

and the cross-couplings between subsystems without 

degrading system performance. The proposed controller is 

applied to the system in simulation environment and the 

results show the efficacy of such a controller. 
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APPENDIX  

The moment of the centrifugal forces (𝑔ℎ𝑣) corresponding 

to the motion of the beam around the vertical axis and the 

non-linear function of moment of inertia (𝐽ℎ) with respect to 

vertical axis is expressed by the following equations: 

𝑔ℎ𝑣 = 0.5Ωℎ
2 (𝑎 + 𝑏 + 𝑐) sin 2𝜃𝑣                                   (A1) 

 

 𝐽ℎ = 𝑑 sin2 𝜃𝑣 + 𝑒 cos2 𝜃𝑣 + 𝑓                                      (A2)                    

𝑎 = (
𝑚𝑡

2
+ 𝑚𝑡𝑟 + 𝑚𝑡𝑠) 𝑙𝑡         

𝑏 = (
𝑚𝑚

2
+ 𝑚𝑚𝑟 + 𝑚𝑚𝑠) 𝑙𝑚,                                                       

𝑐 =
𝑚𝑏

2
𝑙𝑏 + 𝑚𝑐𝑏𝑙𝑐𝑏                                                                       

𝑑 = (
𝑚𝑚

3
+ 𝑚𝑚𝑟 + 𝑚𝑚𝑠) 𝑙𝑚

2 + (
𝑚𝑡

3
+ 𝑚𝑡𝑟 + 𝑚𝑡𝑠) 𝑙𝑡

2                  

𝑒 =
𝑚𝑏

2
𝑙𝑏

2 + 𝑚𝑐𝑏𝑙𝑐𝑏
2                                                                       

 𝑓 = 𝑚𝑚𝑠𝑟𝑚𝑠
2 +

𝑚𝑡𝑠

2
𝑟𝑡𝑠

2           

where 𝑚𝑡𝑠/𝑚𝑠 is the mass of the tail/main shield, 𝑟𝑡𝑠/𝑚𝑠 is 

the radius of the tail/main shield, 𝑚𝑡/𝑚 is the mass of the 

tail/main part of the beam and 𝑚𝑡𝑟/𝑚𝑟 is the mass of the 

tail/main DC-motor. 𝑚𝑏 and 𝑙𝑏 are the mass and the length 

of the counterweight beam, respectively. 𝑚𝑐𝑏 and 𝑙𝑐𝑏 

http://ieeexplore.ieee.org.www.sndl1.arn.dz/xpl/mostRecentIssue.jsp?punumber=4827
http://ieeexplore.ieee.org.www.sndl1.arn.dz/xpl/mostRecentIssue.jsp?punumber=4827


 A. CHELIHI & M. TOUBA  

58 

 

represent the mass of the counterweight and the distance 

between the counterweight and the joint, respectively. The 

numerical values of the parameters of the TRMS are given 

in Table A1. 

 

Table A1: The TRMS parameters 

Parameter Value Parameter Value 

tl (m) 0.250 
tsm (kg) 0.165 

ml (m) 0.240 
msm (kg) 0.225 

(m) 0.260 𝑔  (m/s2) 9.81 

(m) 0.130 𝐽𝑣 (kg.m2) 0.055448 

  (m) 0.100 𝐽𝑡𝑟 ( kg.m2) 1.6543 10-5 

msr  (m) 0.155 𝐽𝑚𝑟 ( kg.m2) 2.65 10-5 

trm (kg) 0.206 𝑇𝑚𝑟 1.432 

mrm (kg) 0.228 𝑇𝑡𝑟  0.3842 

cbm (kg) 0.068 𝐾𝑚𝑟 1 

tm (kg) 0.0155 𝐾𝑡𝑟  1 

mm (kg) 0.0145 𝐾𝑣  0.00545371 

bm (kg) 0.022 𝐾ℎ 0.0095 

 

bl

cbl

tsr
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