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ABSTRACT 

In this paper, a finite element procedure for static analysis of functionally graded material (FGM) beam is presented. The 

material properties of the beam are assumed to vary continuously along the beam thickness by a power-law distribution.  The 

assumed field displacements equations of the beam are represented by Euler-Bernoulli and first order shear deformation 

theories. A simply supported beam subjected to uniform load for different length-to-thickness ratio has been chosen. The 

influences of span-to-depth and the volume fraction index on the mid plane deflections, and stresses distribution along the 

thickness of the beam are examined. The obtained results are compared with the existing solutions to verify the validity of the 

developed theories. 

 

KEYWORDS: Functionally Graded Material; Power-law; Finite Element Method; Euler Bernoulli‘s beam; Timoshenko’s 

beam. 

 

1 INTRODUCTION 

Functionally graded materials (FGM’s) are a new kind of 

composite materials which have a gradual and continuous 

variation of the volume fraction of each component (usually 

metal and ceramic) through the thickness direction, leading 

to changes of global thermo mechanical properties of the 

structural element they represent. They were designed to 

overcome the problems caused by severe thermal 

environments. 

A new beam element based on the first order shear 

deformation theory was developed to study the thermo 

elastic behavior of FGM beam structures by Chakraborty 

and Gopalakrishnan [1], Chakraborty et al. [2] In those 

papers; both exponential and power variations of material 

property distribution were employed. Kapuria et al. 

[3]presented a finite element model for static and free 

vibration responses of layered FG beams using an efficient 

third order zigzag theory for estimating the effective 

modulus of elasticity, and its experimental validation for 

two different FGM systems under various boundary 

conditions. Kadoli et al. [4] proposed a fined element based 

on a third-order approximation of the axial displacement 

and constant transverse displacement for the static analysis 

of beams made of metal-ceramic FGMs. Components’ 

volume fraction was supposed to vary according to a 

power-law function. A discrete layer approach was adopted 

to account for material gradation. As far as elasticity 

solutions are concerned. Shi et al. [5] presented the quasi-

conforming finite element for the deflection analysis of 

composite beams using higher order theory. Kutiš et al. [6] 

presented a finite element procedure for modeling a FGM 

beam with spatial variation of material properties. Also 

using the finite element method, Pindera and Dunn [7] 

evaluated the higher order theory by performing a detailed 

finite element analysis of the FGM. They found that the 

HOTFGM results agreed well with the FE results. The large 

deflections of tapered functionally graded beams subjected 

to end forces are studied by Nguyen and Gan [8] by using 

the finite element method. The material properties of the 

beams are assumed to vary through the thickness direction 

according to a power law distribution. The finite element 

formulation of the FG beam element derived in the present 

paper has been applied in a finite element program. Using 

this program, some sample problems are solved to show the 

performance of the present finite element FG beam 

formulation. The material properties of the beam are 

assumed to vary continuously along the beam thickness by 

a power-law distribution.  The assumed field displacements 

equations of the beam are represented by Euler-Bernoulli 

and first order shear deformation theories. A simply 

supported beam subjected to uniform load for different 

length-to-thickness ratio has been chosen. The influences of 

span-to-depth and the volume fraction index on the mid 

plane deflections, and stresses distribution along the 

thickness of the beam are examined. The obtained results 
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are compared with the existing solutions to verify the 

validity of the developed theories. 

 

2 MATERIAL PROPERTIES OF FGM BEAM AND 

FINITE ELEMENT FORMULATION 

2.1 Effective material properties of metal ceramic 

functionally graded beams 

(Fig.1) shows a FGM beam composed of ceramic and metal 

of length L, width b and thickness h. Material properties 

vary continuously in the z direction. Topmost surface 

consists of only ceramic and bottom surface has only metal. 

In between volume fraction of ceramic cV  and metal mV   

are obtained by power law distribution in conjunction with 

simple law of constituent mixture as follows: 

1
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p

m

z
V

h

 
  
 

           (1-a)                           

1c mV V             (1-b) 

 

 

Figure 01: Geometry of FGM beam and the possible variation of 

ceramic and metal through thickness 

 

Where,  

z = distance from mid-surface and p = power law index, the 

non-negative variable parameter which dictates the material 

variation profile through the thickness of the beam a 

positive real number. For p = 0 volume fraction of ceramic 

becomes one and homogeneous beam consisting only 

ceramic is obtained, when value of p is increased, content 

of metal in FGM increases.  

The effective material properties effMP corresponding to the 

model of Voigt (Shen, 2009) are evaluated using the 

relation: 

   eff m m c cMP MP V z MPV z         (2) 

 

Where, mMP  and cMP  stands for material properties of 

metals and ceramics respectively. Thus the modulus of 

elasticity effE , Poisson’s ratio eff , and shear modulus effG , 

of FGMs can be given a by a simple power law distribution 

(Simsek, 2009): 
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Using the above relation it is possible to obtain an insight 

into the variation of the material properties across the 

thickness of the beam for different power law indexes. (Fig. 

2a, 2b, 2c) illustrate the variation of Young’s modulus and 

Poisson’s ratio and shear modulus of an FGM beam. 

 

 

a)Young's Modulus E (z) 

 

 

b) Poisson's ratio ν (z) 

 

c) Shear Modulus G (z) 

Figure 02: Variation of Poisson’s ratio, Young’s modulus and 

Shear Modulus of an FGM beam along the thickness 

for various power law indexes 
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2.2 Finite element formulation 

2.2.1 Euler-Bernoulli beam (CBT) 

Based on the Euler–Bernoulli beam theory, the axial 

displacement u and the transverse displacement of any point 

of the beam, w, are given by: 

   
 0

0

w x
u x,z u x z

x


 


       (4-a) 

   0w x,z w x        (4-b) 

 

Eqs. (4) Can be rewritten as 
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Where 0u and 0w  are the axial and the transverse 

displacement of any point on the mid-plane. 

By assuming the small deformations, the displacement–

strain relation can be represented by 

2
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Where xx  is the normal strain in the x direction.  

Considering the material of FGM beam obeys Hooke’s law, 

the strain–stress constitutive equation can be written as 

following 

     0xx xx xxz E z zE z           (7-a) 
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The constitutive equation expressed as a function FGMs 

membrane forces N and bending moments M for a FGM 

beam, is given by 

   
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2.2.2 Timoshenko beam theory (TBT) 

Let us consider a straight beam of length L and axis x 

linking the gravity center G of all cross-sections with xz 

being a principal plane of inertia. The variation of material 

properties is along the beam thickness and assumed to 

follow the power-law. Hence, in general the beam axis does 

not coincide with the neutral axis. Timoshenko hypothesis 

for the rotation of the normal to hold will be assumed. The 

axial and vertical displacements of a point A of the beam 

section are expressed as 

     0u x,z u x z x           (9-a) 

   0w x,z w x           (9-b) 

Where  
0

  denotes the displacements of the beams axis 

The axial and transverse shear strains are deduced from eqs. 

(9) as 
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Equation (10) can be written in matrix form as  
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where ԑ is the strain vector,   is the generalized strain 

vector containing the elongation of the beam axis 0u

x




, the 

curvature 
x




 and the transverse shear strain 0w

x






  and 

S is a strain-displacement transformation matrix depending 

on the thickness coordinate z. 

From the equilibrium equation along the x direction 
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2.2.3 The position of the neutral surface 

Clearly, due to variation of the effective Young’s modulus, 

the neutral axis is no longer at the midplane, but it shifts 

from the midplane unless for an isotropic beam with 

symmetrical Young’s modulus. The position of the neutral 

axis can be determined by solving the following equation: 
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Where,  

a: is the distance of the neutral surface from the midplane of 

beam and ρ is the curvature radius of the neutral surface. 

The position of the neutral surface can be determined from 

below equation: 
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3 NUMERICAL RESULTS AND DISCUSSIONS 

3.1 Static Analysis 

In this section, various examples are presented and 

discussed to verify the accuracy of present theories in 

predicting the bending of simply supported FG beams 

(Fig.1). An Al/Al2O3 beam composed of aluminum (metal) 

and alumina (ceramic) is considered. The material 

properties of aluminum are: 
 

70 0 3m mE GPa, .                                         

 

And those of alumina are 380 0 3m mE GPa, .    

The non-dimensional quantities used here are  
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Table 1 contains the nondimensional deflections and 

stresses of FGM beams under uniform load for different 

values of power law index and different span-to-depth ratio. 

 

     Table 01: Nondimensional deflections and stress of FGM beams under uniform load 

p Method 
L/h=5 L/h=20 

w  x  xz  w  x  xz  

0 

Li et al. [9] 

present TBT 

CBT  [10] 

present CBT 

TSDBT 

31,65 

31,65 

28,78 

28,78 

- 

38,02 

37,59 

37,50 

37,59 

- 

7,50 

7,03 

- 

- 

7,50 

28,96 

28,96 

28,78 

28,78 

- 

150,13 

150,38 

150,00 

150,38 

- 

7,50 

7,03 

- 

- 

7,50 

1 

Li et al [9] 

present TBT 

CBT [10] 

present CBT 

TSDBT 

62,59 

62,54 

57,74 

57,69 

- 

58,83 

58,12 

58,95 

58,12 

- 

7,50 

5,91 

- 

- 

7,50 

58,04 

57,99 

57,74 

57,69 

- 

232,05 

232,53 

231,83 

232,53 

- 

7,50 

5,91 

- 

- 

7,50 

2 

Li et al [9] 

Present TBT 

CBT [10] 

present CBT 

TSDBT 

80,60 

80,18 

74,00 

73,89 

- 

68,81 

67,87 

67,67 

67,87 

- 

6,38 

5,07 

- 

- 

6,38 

74,41 

74,28 

74,00 

73,89 

- 

270,98 

271,52 

270,70 

271,52 

- 

6,38 

5,07 

- 

- 

6,38 

5 

Li et al [9] 

Present TBT 

CBT [10] 

Present CBT 

TSDBT 

97,80 

96,33 

87,50 

87,36 

- 

81,03 

79,66 

79,42 

79,66 

- 

5,12 

5,04 

- 

- 

5,12 

88,15 

87,92 

87,50 

87,36 

- 

318,11 

318,69 

317,71 

318,69 

- 

5,12 

5,04 

- 

- 

5,12 

 

The calculated values based on the present theories (TBT, 

CBT) are obtained, it can be observed that the values 

obtained using the TBT and CBT) are in good agreement 

with those given by Li et al. [9] and Tai et al.[10] for all 

values of power law index and span-to-depth ratio. 

It is worth noting that the results of Li et al. [9] are 

evaluated based on the analytical solutions (seen the 

Appendix B in the Ref Li et al. [9]). 

It can be seen that the increasing of power law index will 

reduce the stiffness of the FG beams, and consequently, 

leads to an increase in the deflections and axial stress. This 

is due to the fact that higher values of power law index 

correspond to high portion of metal in comparison with the 

ceramic part, thus makes such FG beams more flexible. 

For the case of transverse shear stress xz , the third order 

shear deformation theory (TSDBT) gives identical results 
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compared with Li et al. [9] unlike TBT. It can be explained 

by the different transverse shear strain shape functions used 

in each models. 

Classical Beam Theory CBT:   0f z    

First order Shear Deformation Beam Theory TBT:  f z z  

Third order Shear Deformation Beam Theory TSDBT: 

 
2

2

4
1

3

z
f z z

h

 
  

 
   

 

a) TBT 

 

b) CBT 

Figure 03: Transverse deflection along the beam length for L/h=5 

[a) TBT, b) CBT] 

 

 

a) 

 

b) 

Figure 04: Depthwise axial stresses and shear stresses 

distribution for L/h=5 

 

 

a) TBT 

 

b) CBT 

Figure 05: Transverse deflection along the beam length for 

L/h=20 [a) TBT, b) CBT] 

 

 

a) 
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b) 

Figure 06: Depthwise axial stresses and shear stresses 

distribution for L/h=20 

 

 

Figure 07: Variation of nondimensional axial normal stress with 

respect to the power law index p for FGM beams 

under uniform load 

 

3.2 Comparison study 

In this section, the deflection of the Al/Al2O3 FGM beam 

using different beam theories will be investigated and 

compared. To facilitate a direct comparison, the obtained 

results are plotted in Fig. 3. And Fig.5 for L / h = 5 and L / 

h = 20, respectively. 

It can be noticed that deflections obtained from first order 

shear deformation theory are more important compared 

with given by classical beam theory; this is due simply to 

the presence of the transverse shear effect. Classical beam 

theory deals only simple bending, without considering the 

shear effect. 

 

3.3 Effect of material parameter p, on deflection, 

axial stress and shear stress 

The deflection of the beam is shown in Fig. 3 and Fig.5 for 

various power law exponent, p and for different length-to-

thickness (L/h=5, L/h=20 respectively). For Al/Al2O3 FGM 

beam, transverse deflection increases as power law 

exponent p is increased. 

As seen from (Fig .4.a) and (Fig.6.a) the axial stress 

distribution is linear for full ceramic and also the values of 

tensile and compressive stresses are equal for isotropic 

beam (full ceramic). But for other values of p the axial 

stress distribution is not linear and also the values of 

compressive stresses are greater than tensile stresses, the 

value of axial stress is zero at the mid-plane but it is clearly 

visible that the values of axial stresses are not zero at the 

mid-plane of the FG beam for the other values of p; it 

indicates that the neutral plane of the beam moves towards 

the upper side of the beam for FG beam. This is due to the 

variation of the modulus of elasticity through the thickness 

of the FG beam.  

(Fig.4.b) and (Fig.6.b) depicts the variation of the shear 

stress across the thickness of beam. With increasing power 

law index (p), the tip of shear stress decreases. By the way, 

it has not considerable effect on the distribution of shear 

stress. 

In Fig.7, we used only TBT, it can be seen that the 

increasing of power law index leads to an increase in the 

axial stress. 

 

4 CONCLUSION 

In this paper, a finite element procedure for static analysis 

of functionally graded material (FGM) beam is presented. 

The material properties of the beam are assumed to vary 

continuously along the beam thickness by a power-law 

distribution.  The assumed field displacements equations of 

the beam are represented by classical beam theory and first 

order shear deformation theories. A FORTRAN code is 

constructed to compute to predict the static responses .A 

simply supported beam subjected to uniform load for 

different length-to-thickness ratio has been chosen. The 

influences of span-to-depth and the volume fraction index 

on the mid plane deflections, and stresses distribution along 

the thickness of the beam are examined. The obtained 

results are compared with the existing solutions to verify 

the validity of the developed theories. 

It was observed that the deflection increases as the power 

law index p increases. The axial stress distribution through 

the depth is linear when power law index value leads to a 

homogeneous beam (ceramic) (p=0). For power law index 

other than homogeneous (p=1, 2 and 5) composition the 

stress profile is not linear. The magnitude of maximum 

axial tensile stress and maximum axial compressive stress 

is dependent on the metal–ceramic combination. 

Distribution of transverse shear stress profile also depends 

on the metal–ceramic. 
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APPENDIX-A 

A.  EULER BERNOULLI BEAM 

The stiffness matrix of a general 2-D FGM beam element is 
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 

 

 

2

2

2
2

2

2

2

h /

a

h /

h /

b

h /

h /

ab

h /

D b E z dz

D b E z z dz

D b E z zdz


































             (A2) 

 

Where: b is the width of the beam 

aD Is the axial stiffness bD  is the bending stiffness, abD  is 

the coupling axial-bending stiffness.  

And 
1

D
L

   

 

APPENDIX-B 

B. TIMOSHENKO BEAM 

The stiffness matrix of a general 2-D FGM beam element is 

 

(B1) 

 

From the equilibrium equation, we deduce z  

2

12 b
z

z s

D

L K D
       (B2) 

With, 

s zD K G  
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     
2 2 2

2

2 2 2

h/ h/ h/

a ab b

h/ h/ h/

D b E z dz , D b E z zdz , D b E z z dz

  

  
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Where: b is the width of the beam. 

z  is a coefficient which characterizes the transverse 

deformations. It depends on both the geometry and material 

characteristics of the section.     
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aD Is the axial stiffness bD  is the bending stiffness, abD  is 

the coupling axialbending stiffness, sD is the shear stiffness 

and zK is the shear correction parameter for bending around 

the y axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


