
Courrier du Savoir – N°14, Novembre 2012, pp.73-79

Université Mohamed Khider – Biskra, Algérie, 2012

CO-ALLOCATION IN GRID COMPUTING USING RESOURCES OFFERS AND

ADVANCE RESERVATION PLANNING

SID AHMED MAKHLOUF & BELABBAS YAGOUBI
 Dept. of Computer Science, University of Oran, Algeria
sidahmed.makhlouf@gmail.com, byagoubi@gmail.com

ABSTRACT

Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically
distributed resources. However, a number of major technical hurdles must overcome before this potential can be realized. One
problem that is critical to effective utilization of computational grids and gives a certain Quality of Service (QoS) for grid users
is the efficient co-allocation of jobs. The advance reservation technique has been widely applied in many grid systems to
provide QoS, however, it will result in low resource utilization rate and high rejection rate when the reservation rate is high.
This work addresses those problems by describing and evaluating a grid resources co-allocation algorithm using resources
providers offers and planning the advance reservations. In our algorithm, a Metascheduler performs job scheduling based on
resources offers and use advance reservation planning mechanism to reserves the best offers. Offers act as a mechanism in
which resource providers expose their interest in executing an entire job or only part of it. The Metascheduler selects
computational resources based on best offers provided by the resources; Meta-schedulers can distribute a job among various
clusters that are usually heterogeneous in order to speed up the job execution.

The main aims of our algorithm is to minimize the total time to execute all jobs (Makespen), minimize the waiting time in the
global queue, maximize the resources utilization rate and balance the load among the resources. The proposed algorithm has
been compared with other scheduling schemes such as First Come First Served (FCFS), easy backfilling (EBF), Fit Processor
First Served (FPFS) and a simple co-allocation algorithm without offers support (SCOAL). The proposed algorithm has been
verified through an extension of GridSim simulation toolkit and the simulation results confirm that the proposed algorithm
allow us to achieve our goals by minimizing the Makespan and the waiting time, maximizing the resources utilization rate and
load the balance among the resources.

KEY WORDS: Grid Computing, Grid Scheduling, Resources Allocation, Resources Co-allocation

1 INTRODUCTION AND RELATED WORK

Grid Computing is concerned with “coordinated resource
sharing and problem solving in dynamic, multi-institutional
virtual organizations” [11]. The coordination between
multiple administrative domain results heterogeneity in
Grid Environment. The resources in Grid Computing
include supercomputers, workstations, databases, storages,
networks and so on. Resources owned by various
administrative organizations are shared under locally
defined policies that specify what is shared, who is allowed
to access what, and under what conditions [12]. To achieve
the promising potentials of computational Grids, an
effective and efficient scheduling system is fundamentally
important. Scheduling (or resources allocation) in Grid
environments is significantly complicated by the
heterogeneous and dynamics nature of Grids. Compared to
traditional scheduling systems such as cluster computing,
Grid scheduling systems have to take into account diverse
characteristics of both various Grid applications (jobs) and
various Grid resources (resources providers). The different

performance goals also place great impacts on the design of
scheduling systems. Sometimes, the needs of a single job
may exceed the capacity available in each of the
subsystems (i.e. clusters) making up a grid, and so co-
allocation (i.e. the simultaneous access to resources of
possibly multiple types in multiple locations managed by
different resource managers or locals scheduler) may be
required.

Various co-allocation frameworks have been developed in
various grid systems [8,22]. These frameworks mainly
focus on co-allocation service architecture and
programming interfaces for grid applications.

As complementary to co-allocation frameworks, many co-
allocation policies and models were proposed.
LEINBERGER et al [16] proposed two backfilling-based
heuristics for K-resource co-allocation. Their studies
showed that load-balancing policy outperforms classical
policies over 50% in terms of mean response time.

MOHAMED and EPEMA [17] proposed a close-to-files

S.A.KHETATBA & al

 74

policy, which tried to place jobs on clusters closing to the
input files so as to reduce communication overhead. HE et
al [14] proposed two policies (ORT and OMT) to address
co-allocation. ORT aimed to optimize mean response time
for non-real-time jobs, while OMR was designed to achieve
the optimal mean deadline miss rate for soft real-time job
streams. To evaluate the performance of various co-
allocation policies, BUCUR and EPEMA [3,4] conducted
extensive experiments in large-scale grid system. Based on
their experimental results on grid test-bed DAS-2 [2], they
made an important conclusion that workload-aware policies
were effective to reduce the mean response time and obtain
better load-balance. Unfortunately, most of the above
policies aimed to improve the system performance metrics,
but few of them took the users’ QoS constraints into
account.

A grid economy [6] has been introduced into grid systems,
such as Spawn [21], Popcon [18], and Nimrod-G [1]. For
instance, Nimrod-G provided three adaptive policies for
deadline and budget constrained resources allocation [5]:
cost optimization, time optimization, and conservative time
optimization. Although economic model has been proven to
be an effective method for resource allocation in distributed
environments, it has two shortcomings that cannot be
ignored: economic models bring about extra
communicational and computational overhead to
applications [6]; and in presence of high-end applications
that require co-allocating multiple resources across sites,
the price negotiation process is often low-efficient [5].

Advance reservation as an effective technique to support
QoS has been incorporated into many grid systems. It
allows applications to gain concurrent access to adequate
resources, and guarantees the availability of resources at the
required time [10], however, advance reservation have
many negative effects on resource sharing and jobs
scheduling in the grid systems. For instance, studies in
[13,20] show that the fixed capability reservation results in
a low resource utilization rate, and excessive reservation
often leads to a high rejection rate. These negative effects
influence the grid economy [6], where resource providers
wish to increase the utilization rate of their resources to
obtain maximal profits.

This work focused on resources co-allocation using
resource providers’ offers and advance reservation planning
in grid computing. A new co-allocation model had been
introduced where a Metascheduler receive a job from grid
user, get a different offers from resources providers to
execute the job, then dispatches the job to the selected
resources based on the best provided offers to improve
resource and user benefit. The objectives of introducing
offers with advance reservation planning to the co-
allocation system are as follows: (1) improve users benefit
by minimizing theirs job’s Makespan and waiting time; (2)
improve resources benefit by maximizing theirs utilization
rate and load the balance among all the resources providers.
Therefore, in this model there are three types of
participants: resource providers, Metascheduler and grid
users. We assume that the co-allocation algorithm is non-
preemptive, and all the jobs are independent.

The remaining part of this paper is organized as follows.
Our Grid Co-allocation Architecture, Model and
Motivations are presented in Section 2. In Section 3, the
algorithmic description of our co-allocation policy is
presented. An experimental setup along with the
comparative results is explained in Section 4. Conclusion
and future research direction is proposed in Section 5

2 SYSTEM ARCHITECTURE, MODEL AND
MOTIVATIONS

2.1 System Architecture

The system architecture is described in figure 1. The main
components used in this architecture are grid users,
Metascheduler and resources providers. Each resource
provider may differ from the rest of the others providers
with respect to number of processors, speed of processing,
local scheduling, etc. A Metascheduler receives job from
grid users, selects feasible resources for those job according
to the bests proposed offers generated from resources
providers and finally submit the job to the selected
resources.

Figure 1: Co-allocation system architecture

2.2 System Model

Figure 2 presents a UML sequence diagram depicting our
grid co-allocation process. The interactions are between the
Grid users, the Metaschedule, and local schedulers of the
resources providers. A user sends a job request to the
Metascheduler for computation. Then the Metascheduler
validates the request and interacts with local schedulers for
requesting offers. Then it tacks the best resource offers
through the procedure that is described in Algorithm 2.
Finally, the submitted Job is sent to the selected resources
that propose the best offers. When the job is finished, the
resources send back a completion event to Metascheduler.

Co-allocation in grid computing using resources offers and advance reservation planning

 75

Figure 2: Sequence Diagram of co-allocation Process

2.3 Motivations

Conventionally, advance reservation is defined as a process
of requesting resources for use at a specific time in the
future [19]. The two key attributes of a reservation request
are starting time and reservation duration time. As the
availability and performance of resources are unpredictable
in large-scale grid systems, precisely estimating these two
parameters is difficult if not impossible. Consequently,
applications tend to overestimate these two parameters
(especially the reservation duration time) to ensure their
successful execution [13]. This behavior results in a high
rejection rate and a low resource utilization rate.

Motivated by these facts, the authors propose a co-
allocation policy with offers advance reservation planning
(COARP). The idea is to ask the resource providers for
their free time slots in the future and reserve the best slots
that cans meet the user’s requirements, see figure 3.

The objective of COARP is to minimize the user’s jobs
response time, minimize the waiting time in the global
queue, increase the resource utilization rate and load the
balance among all the resource providers.

Figure 3: Resources provider’s slots representation in the time

3 CO-ALLOCATION ALGORITHM

3.1 Resources Offer Generation

Offer cO consists of a list of slots. A slot  
 ,

, ,
s n
i c DS is

windows for a resource provider c that represent it’s start
time availability s . Etch slot i consist of a number
available processors n at time s and duration time D to
execute a job. We can represent an offer from resource

provider c as  
  ,

, , | 1,s n
c ci c DO S i O  . Offers are to

execute part or the entire job. The resource provider could
follow different policies to generate offers. For instance, a
resource provider could generate offers that are more
profitable [9,15]; provide some slack in case of resource
failures or to increase the chances of admitting more jobs in
future; or do not violate the reservation of already accepted
jobs. In this work, we support the third approach and will
leave the other two for future work. The offer generation is
described in the algorithm 1.

Algorithm 1: Resources Offer Generation

S.A.KHETATBA & al

 76

The resource provider uses the job information provided by
the Metascheduler P

LJ that includes the length L of the
job in MIPS (Millions Instructions Per Second), and
number of required processors P .

In order to generate an offer cO for a job P
LJ , the resource

provider c :

 Calculate the execution duration time D of the job.
 Find all the available free slots in the advance

reservation list.
 Create a list of free slots cO for each job P

LJ . Etch slot
i include it’s start time s , the number of the available
processors n , the duration D to execute the job and
the resource provider identifier c .

 Return the offer cO to the Metascheduler.

3.2 Offers Composition

The Metascheduler is responsible for composing the offers
from the different resource providers to meet a job
requirement. The offer composition determines how much
work the Metascheduler should send to each resource
provider. The goal of the Metascheduler is to meet users’
requirement, minimize the job Makespen and waiting time,
maximize the resources utilization rate and load the balance
among the resources providers. The offer composition is
described in the algorithm 2.

Algorithm 2: Offers Composition

After collecting the offers from all the N resource
providers, the Metascheduler:

 Creates a 1

N

c
c

O f f e r s L i s t O


 
 with all the proposed

offers, etch offer cO from resource provider c contain

a set of free slots  
  ,

, , | 1 ,s n
c ci c DO S i O  . If the

offers list is empty, then the job will be placed in the
global waiting queue and it will be rescheduled as the
resources will become available again.

 Sorts the OffersList in ascending order by finish time
with FinishTime = StartTime + DurationTime.

 Create a B estO ffersL ist O ffersL is t that contains

the first best slots in the OffersList according to the
job requirement P .

 For etch slot  
 ,

, ,
s n

i c DS in the BestOffersList with

1,i BestOffersList
, send an advance reservation

request , , , ,P
LA R s n D J c  to the resource provider c

that include slot’s start time s , slot’s available
processors n , the job execution duration time D in

the resource provider c and the job request
P
LJ .

4 EXPERIMENTAL SETUP AND RESULTS
ANALYSTS

4.1 Experimental Setup

We have evaluated our co-allocation policy by means of
simulations to observe its effect in a long-term usage. We
have used the event-driven simulator named GridSim [7],
which we have extended to support jobs on multi-site
environments. We have used real traces from
supercomputers available at the Parallel Workloads
Archive. In our simulation, various entities connected by a
network and every two entities' connectivity had an
exclusive bandwidth. In order to make comparisons with
other results we chose FCFS, EBF, FPFS and Simple co-
allocation policy (SCOAL) as the benchmarks because
most related works evaluated these algorithms.

We have modeled an environment composed of seven
clusters with their own local schedulers, and one
Metascheduler that receives jobs that can be executed in
either a single or multiple clusters, Table 1 illustrate our
grid environment. We have used the trace file of the San
Diego Supercomputer Center Blue Horizon with 1,152
processors, 144 nodes IBM SP, with 8 processors per node
node. More details on the trace file can be found at the
Parallel Workloads Archive1. We have simulated 270 days
of this traces that is equivalent to 53349 jobs.

1 http://www.cs.huji.ac.il/labs/parallel/workload

Co-allocation in grid computing using resources offers and advance reservation planning

 77

Table 1: Computational Grid Environment

We performed the experiments on a PC with two Cores
Processors, 2.20GHz and 2GB RAM using Linux 64 bits.
We have assessed four metrics:

 Makespan: total time to execute all the submitted jobs,
 

1

M a x J o b s

i i
i

M a k e s p e n F E


  with iE and iF are
respectively the execution start time and the execution
finish time of the job i .

 Waiting Time: average time difference between the
submit time and execution start time of all the jobs,

 
1

M a x J o b s

i i
i

E S
W a i t i n g T i m e

M a x J o b s





 with iS and iE

are respectively the submission time and the execution
start time of the job i ;

 System Utilization: average resource utilization rate

1

N

c
c

N


 


 with N the numbers of resources

providers, c is the system utilization rate of
resource’s provider c .

 System Load balancing: standard deviation

 2

1

N

c
c

N

 
 





 of the resource’s providers

utilization rate to measure the load variations between
the clusters.

4.2 Results analysts

Makespan: From Figure 4 we can see that when the
number of jobs increases, the Makespan increases and by
comparing the five curves of Figure 4, we see that we have
obtained a gain in Makespan by using our co-allocation
algorithm compared to the other scheduling algorithms.
This is due to the co-allocation strategy that allows the
distribution of the job’s execution time on the most
available resources when there is not an adequate resource,
unlike the other scheduling algorithms that try to find the
best resource that satisfy the job’s requirements; otherwise,
the job will remain in the global queue of the
Metascheduler, which will delay the job’s execution start
time.

Figure 4: Total Makespan to execute all the jobs

Waiting time: From Figure 5 we can see that when the
number of jobs increases, the average waiting time
decreases and by comparing the five curves of Figure 5, we
see that our co-allocation algorithm allowed us to reduce
the average waiting time of the jobs compared to the other
scheduling algorithms. This is due to the advance
reservation that ensures the availability of the resources and
minimizes the waiting time in the local queues of the
clusters, unlike the other scheduling algorithms that try to
find the best resource that corresponds to the job
requirements; otherwise, the job will remain in the global
queue of the Metascheduler, which implies an increase in
the waiting time of the job.

Figure 5: average waiting time of all the submitted the jobs

Resources utilization: From Figure 6 we can see that the
utilization rate of the resources remains stable in time and
by comparing the five curves of Figure 6, we see that our
co-allocation strategy give us a maximization of resources
utilization rate compared to the other scheduling
algorithms. This is due to the co-allocation strategy that
allows the fragmentation of the job on the most available
resources when there is no appropriate resource, unlike the
other scheduling algorithms that try to find the best
resource that corresponds to the job requirements;
otherwise, the job will remain in the global queue, which
implies an under-utilization of the resources.

S.A.KHETATBA & al

 78

Figure 6: Resources utilization rate

System Load Balancing: From Figure 7 we can see that
the standard deviation remains stable in time and by
comparing the five curves of Figure 7, we see that our co-
allocation strategy load the balance among the resources
providers compared to the other scheduling algorithms.
This is due to the offer mechanism that allows the local
schedulers to generate offers according to their computing
capabilities, unlike the other scheduling algorithms that
consult Global information System (GIS) to schedule the
jobs. These GISs are often centralized and have an
asynchronous view on the global state of the system.

Figure 7: Standard deviation of resources utilization

5 CONCLUSION AND FUTURE WORK

The success of grid computing will depend on the effective
utilization of the grid’s resources for various
computationally jobs. Given a vast number of resources that
are available on a Grid, an important problem is the co-
allocation of the jobs on the grid with various objectives:
Makespan, waiting time, resources utilization rate and load
the balance. In this paper, we introduced a co-allocation
policy for composing resource offers from multiple
resources providers to co-allocate a grid user’s jobs. These
offers express the interest of resource providers in
executing an entire job or only part of it without revealing
their local load and total system capabilities. When the
Metascheduler receives offers to meet user requirements, it
can decide how to submit the job among the resource
providers.

We extend the GridSim Tool Kit to carry out the simulation
of our co-allocation algorithm to reduce the total time to
release user jobs and waiting time in the global queue,

maximize the resources utilization rate and load the balance
among the resources providers, and compared our results
with FCFS, EBF, FPFS and simple co-allocation algorithms
(SCOAL). We draw the conclusion that our co-allocation
algorithm presented in this paper is better than algorithms
FCFS, EBF, FPFS and simple co-allocation (SCOAL).

In this work, we assume that there is no communications
among different jobs or different tasks of a job. Usually, the
jobs are independent of each other in the grid, but different
tasks of a job may require communicating, hence, it is an
interesting direction for future research. In the future, we
should also consider some fault tolerant measures to
increase the reliability of our algorithm.

REFERENCES
[1] Abramson D., Giddy J., Foster I. "High performance

parametric modeling with nimrod/G: killer application for
the global grid?", Proceedings of Inter Symp on Parallel and
Distributed Processing, Chicago, IEEE Computer Society
Press, 2000.

[2] Bal H., Bhoedjang R. R., Hofman R., "The distributed ASCI
supercomputer project", ACM Operating Systems Review,
34(4), 76−96, 2000.

[3] Bucur A. I. D., Epema D. H. J., "The performance of
processor co-allocation in multicluster systems", Proceedings
of IEEE/ACM Inter Symp on Cluster Computing and the
Grid, Tokyo, IEEE Computer Society Press, 302−309, 2003.

[4] Bucur A. I. D., Epema D. H. J., "Scheduling policies for
processor co-allocation in multicluster system", IEEE Trans
on Parallel and Distributed Systems, 18(7), 958−962, 2007.

[5] Buyya R., "Economic-based distributed resource
management and scheduling for grid computing",
Melbourne, Monash University, 2002.

[6] Buyya R., Abramson D., Venugopal S., "The grid economy",
Proceeding of the IEEE, 93(3), 698−714, 2005.

[7] Buyya R., Murshed M., "GridSim : A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing", The
Journal of Concurrency and Computation, Practice and
Experience (CCPE), Volume 14, Issue 13-15, Wiley Press,
2002.

[8] Czajkowski K., Foster I., Kesselman C., "Resource
coallocation in computational grids", Proceedings of Inter
Symp on High Performance Distributed Computing,
California IEEE Computer Society Press, 219−228, 1999.

[9] Feitelson D. G., Rudolph R., "Parallel Job Scheduling: Issues
and Approaches", In Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 1–18.
Springer, Heidelberg, 1995.

[10] Foster I., Kesselman C., Lee C., et al, "A distributed resource
management architecture that supports advance reservation
and co-allocation", Proceedings of the 7th International
Workshop on Quality of Service (IWQoS’99), Jun 1-4, 1999,
London, UK. Los Alamitos, CA, USA, IEEE Computer
Society, 27-36, 1999.

Co-allocation in grid computing using resources offers and advance reservation planning

 79

[11] Foster I., Kesseleman C., Tuecke S., "The Anatomy of the
Grid: Enabling Scalable virtual Organizations", International
Journal of Super Computer Applications 15, 3, 2001.

[12] Foster I., Iamnitchia A., "On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing", In
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003, LNCS, vol.
2735, Springer, Heidelberg, 2003.

[13] Foster I., Roy A., Sander V., "A quality of service
architecture that combines resource reservation and
application adaptation", Proceedings of the 8th International
Workshop on Quality of Service (IWQoS’00), Jun 5-7, 2000,
Pittsburgh, PA, USA. Los Alamitos, CA, USA,IEEE
Computer Society, 181-188, 2000.

[14] He L. G., Jarvis S. A., Spooner D. P., "Allocating non-real-
time and soft real-time jobs in multiclusters", IEEE Trans on
Parallel and Distributed Systems, 17(2), 99−112, 2006.

[15] Herroelen W., De Reyck B., Demeulemeester E, "Resource
constrained project scheduling: A survey of recent
developments", Computers and Operations Research 25,
279–302, 1998.

[16] Leinberger W., Karypis G., Kumar V., "Job scheduling in
the presence of multiple resource requirements", Proceedings
of ACM/IEEE Conf on Supercomputing, Portland IEEE
Computer Society Press, 1999.

[17] Mohamed H. H., Epema D. H. J., "An evaluation of the
close-to-files processor and data co-allocation policy in
multiclusters", Proceedings of Inter Conf on Cluster
Computing, San Diego IEEE Computer Society Press,
287−298, 2004.

[18] Nisan N., London S., Regev O. "Globally distributed
computation over the internet: The POPCORN project",
Proceedings of Inter Conf on Distributed Computing
Systems, Amsterdam, IEEE Computer Society Press,
592−601, 1998.

[19] Roy A., Sander V., "Advance reservation API", Technical
Report GFD-E.5, Scheduling Working Group, Global Grid
Forum, 2002.

[20] Snell Q., Clement M., Jackson D., et al, "The performance
impact of advance reservation metascheduling", Proceedings
of Job Scheduling Strategies for Parallel Processing
(JSSPP’00), May 1-5, 2000, Cancun, Mexico. Los Alamitos,
CA, USA, IEEE Computer Society, 137-153, 2000.

[21] Waldspurger C. A., Hogg T., Huberman B. A., et al,
"Spawn: A distributed computational economy", IEEE Trans
on Software Engineering, 18(2), 103−117, 1992.

[22] Wolski R., Brevik J., Obertelli G., Spring N., "Writing
programs that run EveryWare on the computational grid",
IEEE Trans on Parallel and Distributed Systems, 12(10),
1066−1080, 2001.

