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ABSTRACT 

Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically 
distributed resources. However, a number of major technical hurdles must overcome before this potential can be realized. One 
problem that is critical to effective utilization of computational grids and gives a certain Quality of Service (QoS) for grid users 
is the efficient co-allocation of jobs. The advance reservation technique has been widely applied in many grid systems to 
provide QoS, however, it will result in low resource utilization rate and high rejection rate when the reservation rate is high. 
This work addresses those problems by describing and evaluating a grid resources co-allocation algorithm using resources 
providers offers and planning the advance reservations. In our algorithm, a Metascheduler performs job scheduling based on 
resources offers and use advance reservation planning mechanism to reserves the best offers. Offers act as a mechanism in 
which resource providers expose their interest in executing an entire job or only part of it. The Metascheduler selects 
computational resources based on best offers provided by the resources; Meta-schedulers can distribute a job among various 
clusters that are usually heterogeneous in order to speed up the job execution.  

The main aims of our algorithm is to minimize the total time to execute all jobs (Makespen), minimize the waiting time in the 
global queue, maximize the resources utilization rate and balance the load among the resources. The proposed algorithm has 
been compared with other scheduling schemes such as First Come First Served (FCFS), easy backfilling (EBF), Fit Processor 
First Served (FPFS) and a simple co-allocation algorithm without offers support (SCOAL). The proposed algorithm has been 
verified through an extension of GridSim simulation toolkit and the simulation results confirm that the proposed algorithm 
allow us to achieve our goals by minimizing the Makespan and the waiting time, maximizing the resources utilization rate and 
load the balance among the resources. 
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1 INTRODUCTION AND RELATED WORK 

Grid Computing is concerned with “coordinated resource 
sharing and problem solving in dynamic, multi-institutional 
virtual organizations” [11]. The coordination between 
multiple administrative domain results heterogeneity in 
Grid Environment. The resources in Grid Computing 
include supercomputers, workstations, databases, storages, 
networks and so on. Resources owned by various 
administrative organizations are shared under locally 
defined policies that specify what is shared, who is allowed 
to access what, and under what conditions [12]. To achieve 
the promising potentials of computational Grids, an 
effective and efficient scheduling system is fundamentally 
important. Scheduling (or resources allocation) in Grid 
environments is significantly complicated by the 
heterogeneous and dynamics nature of Grids. Compared to 
traditional scheduling systems such as cluster computing, 
Grid scheduling systems have to take into account diverse 
characteristics of both various Grid applications (jobs) and 
various Grid resources (resources providers). The different 

performance goals also place great impacts on the design of 
scheduling systems. Sometimes, the needs of a single job 
may exceed the capacity available in each of the 
subsystems (i.e. clusters) making up a grid, and so co-
allocation (i.e. the simultaneous access to resources of 
possibly multiple types in multiple locations managed by 
different resource managers or locals scheduler) may be 
required. 

Various co-allocation frameworks have been developed in 
various grid systems [8,22]. These frameworks mainly 
focus on co-allocation service architecture and 
programming interfaces for grid applications. 

As complementary to co-allocation frameworks, many co-
allocation policies and models were proposed. 
LEINBERGER et al [16] proposed two backfilling-based 
heuristics for K-resource co-allocation. Their studies 
showed that load-balancing policy outperforms classical 
policies over 50% in terms of mean response time. 

MOHAMED and EPEMA [17] proposed a close-to-files 
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policy, which tried to place jobs on clusters closing to the 
input files so as to reduce communication overhead. HE et 
al [14] proposed two policies (ORT and OMT) to address 
co-allocation. ORT aimed to optimize mean response time 
for non-real-time jobs, while OMR was designed to achieve 
the optimal mean deadline miss rate for soft real-time job 
streams. To evaluate the performance of various co-
allocation policies, BUCUR and EPEMA [3,4] conducted 
extensive experiments in large-scale grid system. Based on 
their experimental results on grid test-bed DAS-2 [2], they 
made an important conclusion that workload-aware policies 
were effective to reduce the mean response time and obtain 
better load-balance. Unfortunately, most of the above 
policies aimed to improve the system performance metrics, 
but few of them took the users’ QoS constraints into 
account. 

A grid economy [6] has been introduced into grid systems, 
such as Spawn [21], Popcon [18], and Nimrod-G [1]. For 
instance, Nimrod-G provided three adaptive policies for 
deadline and budget constrained resources allocation [5]: 
cost optimization, time optimization, and conservative time 
optimization. Although economic model has been proven to 
be an effective method for resource allocation in distributed 
environments, it has two shortcomings that cannot be 
ignored: economic models bring about extra 
communicational and computational overhead to 
applications [6]; and in presence of high-end applications 
that require co-allocating multiple resources across sites, 
the price negotiation process is often low-efficient [5]. 

Advance reservation as an effective technique to support 
QoS has been incorporated into many grid systems. It 
allows applications to gain concurrent access to adequate 
resources, and guarantees the availability of resources at the 
required time [10], however, advance reservation have 
many negative effects on resource sharing and jobs 
scheduling in the grid systems. For instance, studies in 
[13,20] show that the fixed capability reservation results in 
a low resource utilization rate, and excessive reservation 
often leads to a high rejection rate. These negative effects 
influence the grid economy [6], where resource providers 
wish to increase the utilization rate of their resources to 
obtain maximal profits.  

This work focused on resources co-allocation using 
resource providers’ offers and advance reservation planning 
in grid computing. A new co-allocation model had been 
introduced where a Metascheduler receive a job from grid 
user, get a different offers from resources providers to 
execute the job, then dispatches the job to the selected 
resources based on the best provided offers to improve 
resource and user benefit. The objectives of introducing 
offers with advance reservation planning to the co-
allocation system are as follows: (1) improve users benefit 
by minimizing theirs job’s Makespan and waiting time; (2) 
improve resources benefit by maximizing theirs utilization 
rate and load the balance among all the resources providers. 
Therefore, in this model there are three types of 
participants: resource providers, Metascheduler and grid 
users. We assume that the co-allocation algorithm is non-
preemptive, and all the jobs are independent. 

The remaining part of this paper is organized as follows. 
Our Grid Co-allocation Architecture, Model and 
Motivations are presented in Section 2. In Section 3, the 
algorithmic description of our co-allocation policy is 
presented. An experimental setup along with the 
comparative results is explained in Section 4. Conclusion 
and future research direction is proposed in Section 5 

 

2 SYSTEM ARCHITECTURE, MODEL AND 
MOTIVATIONS 

2.1 System Architecture 

The system architecture is described in figure 1. The main 
components used in this architecture are grid users, 
Metascheduler and resources providers. Each resource 
provider may differ from the rest of the others providers 
with respect to number of processors, speed of processing, 
local scheduling, etc. A Metascheduler receives job from 
grid users, selects feasible resources for those job according 
to the bests proposed offers generated from resources 
providers and finally submit the job to the selected 
resources. 

 

 
Figure 1: Co-allocation system architecture 

 

2.2 System Model 

Figure 2 presents a UML sequence diagram depicting our 
grid co-allocation process. The interactions are between the 
Grid users, the Metaschedule, and local schedulers of the 
resources providers. A user sends a job request to the 
Metascheduler for computation. Then the Metascheduler 
validates the request and interacts with local schedulers for 
requesting offers. Then it tacks the best resource offers 
through the procedure that is described in Algorithm 2. 
Finally, the submitted Job is sent to the selected resources 
that propose the best offers. When the job is finished, the 
resources send back a completion event to Metascheduler. 
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Figure 2: Sequence Diagram of co-allocation Process 

 

 

2.3 Motivations 

Conventionally, advance reservation is defined as a process 
of requesting resources for use at a specific time in the 
future [19]. The two key attributes of a reservation request 
are starting time and reservation duration time. As the 
availability and performance of resources are unpredictable 
in large-scale grid systems, precisely estimating these two 
parameters is difficult if not impossible. Consequently, 
applications tend to overestimate these two parameters 
(especially the reservation duration time) to ensure their 
successful execution [13]. This behavior results in a high 
rejection rate and a low resource utilization rate. 

Motivated by these facts, the authors propose a co-
allocation policy with offers advance reservation planning 
(COARP). The idea is to ask the resource providers for 
their free time slots in the future and reserve the best slots 
that cans meet the user’s requirements, see figure 3. 

The objective of COARP is to minimize the user’s jobs 
response time, minimize the waiting time in the global 
queue, increase the resource utilization rate and load the 
balance among all the resource providers. 

 
Figure 3: Resources provider’s slots representation in the time 

 

3 CO-ALLOCATION ALGORITHM 

3.1 Resources Offer Generation 

Offer cO  consists of a list of slots. A slot  
 ,

, ,
s n
i c DS  is 

windows for a resource provider c  that represent it’s start 
time availability s . Etch slot i  consist of a number 
available processors n  at time s  and duration time D  to 
execute a job. We can represent an offer from resource 

provider c  as  
  ,

, , | 1,s n
c ci c DO S i O  . Offers are to 

execute part or the entire job. The resource provider could 
follow different policies to generate offers. For instance, a 
resource provider could generate offers that are more 
profitable [9,15]; provide some slack in case of resource 
failures or to increase the chances of admitting more jobs in 
future; or do not violate the reservation of already accepted 
jobs. In this work, we support the third approach and will 
leave the other two for future work. The offer generation is 
described in the algorithm 1. 

 

 

 
Algorithm 1: Resources Offer Generation 
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The resource provider uses the job information provided by 
the Metascheduler P

LJ  that includes the length L  of the 
job in MIPS (Millions Instructions Per Second), and 
number of required processors P . 

In order to generate an offer cO  for a job P
LJ , the resource 

provider c : 

 Calculate the execution duration time D  of the job. 
 Find all the available free slots in the advance 

reservation list. 
 Create a list of free slots cO  for each job P

LJ . Etch slot 
i  include it’s start time s  , the number of the available 
processors n , the duration D  to execute the job and 
the resource provider identifier c . 

 Return the offer cO  to the Metascheduler. 
 

3.2 Offers Composition 

The Metascheduler is responsible for composing the offers 
from the different resource providers to meet a job 
requirement. The offer composition determines how much 
work the Metascheduler should send to each resource 
provider. The goal of the Metascheduler is to meet users’ 
requirement, minimize the job Makespen and waiting time, 
maximize the resources utilization rate and load the balance 
among the resources providers. The offer composition is 
described in the algorithm 2. 

 

 

  
Algorithm 2: Offers Composition 

After collecting the offers from all the N  resource 
providers, the Metascheduler: 

 Creates a 1

N

c
c

O f f e r s L i s t O


 
  with all the proposed 

offers, etch offer cO  from resource provider c   contain 

a set of free slots  
  ,

, , | 1 ,s n
c ci c DO S i O   . If the 

offers list is empty, then the job will be placed in the 
global waiting queue and it will be rescheduled as the 
resources will become available again. 

 Sorts the OffersList  in ascending order by finish time 
with FinishTime = StartTime + DurationTime. 

 Create a B estO ffersL ist O ffersL is t  that contains 

the first best slots in the OffersList  according to the 
job requirement P . 

 For etch slot  
 ,

, ,
s n

i c DS  in the BestOffersList  with 

1,i BestOffersList
, send an advance reservation 

request , , , ,P
LA R s n D J c   to the resource provider c  

that include slot’s start time s , slot’s available 
processors n  , the job execution duration time D  in 

the resource provider c  and the job request 
P
LJ . 

 
 

4 EXPERIMENTAL SETUP AND RESULTS 
ANALYSTS 

4.1 Experimental Setup 

We have evaluated our co-allocation policy by means of 
simulations to observe its effect in a long-term usage. We 
have used the event-driven simulator named GridSim [7], 
which we have extended to support jobs on multi-site 
environments. We have used real traces from 
supercomputers available at the Parallel Workloads 
Archive. In our simulation, various entities connected by a 
network and every two entities' connectivity had an 
exclusive bandwidth. In order to make comparisons with 
other results we chose FCFS, EBF, FPFS and Simple co-
allocation policy (SCOAL) as the benchmarks because 
most related works evaluated these algorithms. 

We have modeled an environment composed of seven 
clusters with their own local schedulers, and one 
Metascheduler that receives jobs that can be executed in 
either a single or multiple clusters, Table 1 illustrate our 
grid environment. We have used the trace file of the San 
Diego Supercomputer Center Blue Horizon with 1,152 
processors, 144 nodes IBM SP, with 8 processors per node 
node. More details on the trace file can be found at the 
Parallel Workloads Archive1. We have simulated 270 days 
of this traces that is equivalent to 53349 jobs. 

                                                        
1 http://www.cs.huji.ac.il/labs/parallel/workload 
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Table 1: Computational Grid Environment 

 
 

We performed the experiments on a PC with two Cores 
Processors, 2.20GHz and 2GB RAM using Linux 64 bits. 
We have assessed four metrics: 

 Makespan: total time to execute all the submitted jobs, 
 

1

M a x J o b s

i i
i

M a k e s p e n F E


   with iE  and iF  are 
respectively the execution start time and the execution 
finish time of the job i . 

 Waiting Time: average time difference between the 
submit time and execution start time of all the jobs, 

 
1

M a x J o b s

i i
i

E S
W a i t i n g T i m e

M a x J o b s





  with iS  and iE  

are respectively the submission time and the execution 
start time of the job i ; 

 System Utilization: average resource utilization rate 

1

N

c
c

N


 


 with N  the numbers of resources 

providers, c  is the system utilization rate of 
resource’s provider c . 

 System Load balancing: standard deviation 

 2

1

N

c
c

N

 
 





 of the resource’s providers 

utilization rate to measure the load variations between 
the clusters. 

 

 

4.2 Results analysts 

Makespan: From Figure 4 we can see that when the 
number of jobs increases, the Makespan increases and by 
comparing the five curves of Figure 4, we see that we have 
obtained a gain in Makespan by using our co-allocation 
algorithm compared to the other scheduling algorithms. 
This is due to the co-allocation strategy that allows the 
distribution of the job’s execution time on the most 
available resources when there is not an adequate resource, 
unlike the other scheduling algorithms that try to find the 
best resource that satisfy the job’s requirements; otherwise, 
the job will remain in the global queue of the 
Metascheduler, which will delay the job’s execution start 
time. 

 

 

 

Figure 4: Total Makespan to execute all the jobs 

 

Waiting time: From Figure 5 we can see that when the 
number of jobs increases, the average waiting time 
decreases and by comparing the five curves of Figure 5, we 
see that our co-allocation algorithm allowed us to reduce 
the average waiting time of the jobs compared to the other 
scheduling algorithms. This is due to the advance 
reservation that ensures the availability of the resources and 
minimizes the waiting time in the local queues of the 
clusters, unlike the other scheduling algorithms that try to 
find the best resource that corresponds to the job 
requirements; otherwise, the job will remain in the global 
queue of the Metascheduler, which implies an increase in 
the waiting time of the job. 

 

 

 
Figure 5: average waiting time of all the submitted the jobs 

 

Resources utilization: From Figure 6 we can see that the 
utilization rate of the resources remains stable in time and 
by comparing the five curves of Figure 6, we see that our 
co-allocation strategy give us a maximization of resources 
utilization rate compared to the other scheduling 
algorithms. This is due to the co-allocation strategy that 
allows the fragmentation of the job on the most available 
resources when there is no appropriate resource, unlike the 
other scheduling algorithms that try to find the best 
resource that corresponds to the job requirements; 
otherwise, the job will remain in the global queue, which 
implies an under-utilization of the resources. 
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Figure 6: Resources utilization rate 

 

System Load Balancing: From Figure 7 we can see that 
the standard deviation remains stable in time and by 
comparing the five curves of Figure 7, we see that our co-
allocation strategy load the balance among the resources 
providers compared to the other scheduling algorithms. 
This is due to the offer mechanism that allows the local 
schedulers to generate offers according to their computing 
capabilities, unlike the other scheduling algorithms that 
consult Global information System (GIS) to schedule the 
jobs. These GISs are often centralized and have an 
asynchronous view on the global state of the system. 

 

 
Figure 7: Standard deviation of resources utilization 

 

5 CONCLUSION AND FUTURE WORK 

The success of grid computing will depend on the effective 
utilization of the grid’s resources for various 
computationally jobs. Given a vast number of resources that 
are available on a Grid, an important problem is the co-
allocation of the jobs on the grid with various objectives: 
Makespan, waiting time, resources utilization rate and load 
the balance. In this paper, we introduced a co-allocation 
policy for composing resource offers from multiple 
resources providers to co-allocate a grid user’s jobs. These 
offers express the interest of resource providers in 
executing an entire job or only part of it without revealing 
their local load and total system capabilities. When the 
Metascheduler receives offers to meet user requirements, it 
can decide how to submit the job among the resource 
providers. 

We extend the GridSim Tool Kit to carry out the simulation 
of our co-allocation algorithm to reduce the total time to 
release user jobs and waiting time in the global queue, 

maximize the resources utilization rate and load the balance 
among the resources providers, and compared our results 
with FCFS, EBF, FPFS and simple co-allocation algorithms 
(SCOAL). We draw the conclusion that our co-allocation 
algorithm presented in this paper is better than algorithms 
FCFS, EBF, FPFS and simple co-allocation (SCOAL). 

In this work, we assume that there is no communications 
among different jobs or different tasks of a job. Usually, the 
jobs are independent of each other in the grid, but different 
tasks of a job may require communicating, hence, it is an 
interesting direction for future research. In the future, we 
should also consider some fault tolerant measures to 
increase the reliability of our algorithm. 

 

 

REFERENCES 
[1] Abramson D., Giddy J., Foster I. "High performance 

parametric modeling with nimrod/G: killer application for 
the global grid?", Proceedings of Inter Symp on Parallel and 
Distributed Processing, Chicago, IEEE Computer Society 
Press, 2000. 

[2] Bal H., Bhoedjang R. R., Hofman R., "The distributed ASCI 
supercomputer project", ACM Operating Systems Review, 
34(4), 76−96, 2000. 

[3] Bucur A. I. D., Epema D. H. J., "The performance of 
processor co-allocation in multicluster systems", Proceedings 
of IEEE/ACM Inter Symp on Cluster Computing and the 
Grid, Tokyo, IEEE Computer Society Press, 302−309, 2003. 

[4] Bucur A. I. D., Epema D. H. J., "Scheduling policies for 
processor co-allocation in multicluster system", IEEE Trans 
on Parallel and Distributed Systems, 18(7), 958−962, 2007. 

[5] Buyya R., "Economic-based distributed resource 
management and scheduling for grid computing", 
Melbourne, Monash University, 2002. 

[6] Buyya R., Abramson D., Venugopal S., "The grid economy", 
Proceeding of the IEEE, 93(3), 698−714, 2005. 

[7] Buyya R., Murshed M., "GridSim : A Toolkit for the 
Modeling and Simulation of Distributed Resource 
Management and Scheduling for Grid Computing", The 
Journal of Concurrency and Computation, Practice and 
Experience (CCPE), Volume 14, Issue 13-15, Wiley Press, 
2002. 

[8] Czajkowski K., Foster I., Kesselman C., "Resource 
coallocation in computational grids", Proceedings of Inter 
Symp on High Performance Distributed Computing, 
California IEEE Computer Society Press, 219−228, 1999. 

[9] Feitelson D. G., Rudolph R., "Parallel Job Scheduling: Issues 
and Approaches", In Feitelson, D.G., Rudolph, L. (eds.) 
IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 1–18. 
Springer, Heidelberg, 1995. 

[10] Foster I., Kesselman C., Lee C., et al, "A distributed resource 
management architecture that supports advance reservation 
and co-allocation", Proceedings of the 7th International 
Workshop on Quality of Service (IWQoS’99), Jun 1-4, 1999, 
London, UK. Los Alamitos, CA, USA, IEEE Computer 
Society, 27-36, 1999. 



Co-allocation in grid computing using resources offers and advance reservation planning 

 79 

[11] Foster I., Kesseleman C., Tuecke S., "The Anatomy of the 
Grid: Enabling Scalable virtual Organizations", International 
Journal of Super Computer Applications 15, 3, 2001. 

[12] Foster I., Iamnitchia A., "On Death, Taxes, and the 
Convergence of Peer-to-Peer and Grid Computing", In 
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003, LNCS, vol. 
2735, Springer, Heidelberg, 2003. 

[13] Foster I., Roy A., Sander V., "A quality of service 
architecture that combines resource reservation and 
application adaptation", Proceedings of the 8th International 
Workshop on Quality of Service (IWQoS’00), Jun 5-7, 2000, 
Pittsburgh, PA, USA. Los Alamitos, CA, USA,IEEE 
Computer Society, 181-188, 2000. 

[14] He L. G., Jarvis S. A., Spooner D. P., "Allocating non-real-
time and soft real-time jobs in multiclusters", IEEE Trans on 
Parallel and Distributed Systems, 17(2), 99−112, 2006. 

[15] Herroelen W., De Reyck B., Demeulemeester E, "Resource 
constrained project scheduling: A survey of recent 
developments", Computers and Operations Research 25, 
279–302, 1998. 

[16] Leinberger W., Karypis G., Kumar V., "Job scheduling in 
the presence of multiple resource requirements", Proceedings 
of ACM/IEEE Conf on Supercomputing, Portland IEEE 
Computer Society Press, 1999. 

 

[17] Mohamed H. H., Epema D. H. J., "An evaluation of the 
close-to-files processor and data co-allocation policy in 
multiclusters", Proceedings of Inter Conf on Cluster 
Computing, San Diego IEEE Computer Society Press, 
287−298, 2004. 

[18] Nisan N., London S., Regev O. "Globally distributed 
computation over the internet: The POPCORN project", 
Proceedings of Inter Conf on Distributed Computing 
Systems, Amsterdam, IEEE Computer Society Press, 
592−601, 1998. 

[19] Roy A., Sander V., "Advance reservation API", Technical 
Report GFD-E.5, Scheduling Working Group, Global Grid 
Forum, 2002. 

[20] Snell Q., Clement M., Jackson D., et al, "The performance 
impact of advance reservation metascheduling", Proceedings 
of Job Scheduling Strategies for Parallel Processing 
(JSSPP’00), May 1-5, 2000, Cancun, Mexico. Los Alamitos, 
CA, USA, IEEE Computer Society, 137-153, 2000. 

[21] Waldspurger C. A., Hogg T., Huberman B. A., et al, 
"Spawn: A distributed computational economy", IEEE Trans 
on Software Engineering, 18(2), 103−117, 1992. 

[22] Wolski R., Brevik J., Obertelli G., Spring N., "Writing 
programs that run EveryWare on the computational grid", 
IEEE Trans on Parallel and Distributed Systems, 12(10), 
1066−1080, 2001. 

 
 


