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ABSTRACT 

This paper deals with the optimization of Sheet Metal Forming parameters in order to reduce defect of springback which occur 
at the end of process. We propose a specific methodology based on the coupling between the one-step Inverse Approach as a 
surrogate model for the rapid simulation of sheet forming process, and a Response Surface Method based on diffuse 
approximation. The response surfaces are built using Moving Least Squares approximations constructed within a moving 
region of interest. Application of the sheet metal forming process is used to demonstrate the robustness of the method. The 
final design is validated with Stampack® and Abaqus® commercial codes based respectively on Explicit Dynamic and Implicit 
Static Approaches. 
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RESUME 

Cet article traite de l'optimisation des paramètres d’emboutissage de tôles afin de réduire le défaut du retour élastique qui se produit à la fin 
du procédé après retrait des outils. Nous proposons une méthodologie spécifique basée sur le couplage entre l’approche inverse pour la 
simulation rapide du procédé d’emboutissage de tôles, et la Méthode de surface de réponse basée sur l’approximation diffuse. Les surfaces 
de réponse sont obtenues en utilisant une approximation par moindre carrée mobile construites dans un domaine d'influence mobile. 
Une application du procédé d’emboutissage de tôles est utilisée pour démontrer la robustesse de la méthode. La forme finale est validée à 
l’aide des codes commerciaux Stampack® et Abaqus® basés sur les approches Explicit Dynamique et Implicite Statique respectivement. 

 

KEYWORDS: Emboutissage, méthode inverse, moindre carrée mobile, retour élastique 

 

1 INTRODUCTION 

In this paper, the use of Moving Least Squares (MLS) 
based on Diffuse Approximation (DA) for the regression 
model is investigated along with strategies for progressive 
selection of points in the design space where designs are 
evaluated in the way to maximize the accuracy while 
minimizing the number of function evaluations. When the 
design of experiments and regression models are selected, 
any usual descent method can be used to find an optimum 
design. In the present work, we exploit further the MLS 
features and particularly the notion of pseudo-derivative to 
design a specific optimization technique, custom built for 
this regression model. 

This new method is an extension of pattern search (Lewis 
and Torczon, 2002) in two aspects: (1) accommodation of 
arbitrary regular and irregular patterns; (2) design points 
eligible for inclusion in any pattern instance belong to a 
predefined set in the design space where experiments are 
authorized. This notion of authorized experiments limits the 
number of function evaluations and permits to explore large 
regions of interest by delaying an effective experiment to 
the moment when it is really needed. We note that without 
restriction (2), the approach becomes a generalization of the 
pattern search. By reducing further the size of the pattern 
towards small perturbations we obtain also a general, 
gradient-free descent method for a given regression fit. 
Gradient counterparts of all the three variants of the method 



M.S. Chebbah & al 

 90 

are obtained when using Hermite MLS development. We 
propose therefore a unified framework covering all the 
three domains: Response Surface Method (RSM), pattern 
search and general optimization for descent methods 
development, based on a common MLS regression model. 
In the final section of the paper, we present a numerical 
procedure combining a simplified finite element Inverse 
Approach (IA) as developed by (Batoz et al., 1998) for the 
rapid stamping process modeling with our RSM.  

 

2 OPTIMIZATION PROBLEM STATEMENT 

In the optimization process, the goal is to 

minimize ( ), nf Rx x  (1) 

subject to a set of m constraints  

( ) 0, 1, ,jg j m x   (2) 

with , 1, ,i i iL x U i n     (3) 

where f  is the cost function, ix  are the design variables, 

jg  is the j-th nonlinear constraint. The region of interest is 

defined by iL  and iU  which are respectively the lower and 
upper bounds on the design variables.  

The RSM approach consists in solving a problem where the 
cost function (and eventually the constraint functions) are 
replaced by their approximations f  and jg . This 
simplified problem may be written as  

minimize ( ), nf Rx x  (4) 

subject to a set of m constraints  

( ) 0, 1, ,jg j m x   (5) 

within the bounds Erreur ! Source du renvoi introuvable.
. 

The approximations 
Erreur ! Source du renvoi introuvable. and 
Erreur ! Source du renvoi introuvable. are based on a set 
of numerical experiments with the function f. The problem 
of distributing the experimental points in the design space is 
known as Design of Experiment (DOE). The goal is to 
obtain a best accuracy with limited number of evaluations 
of f  and jg . 

 

3 MOVING LEAST SQUARES MODEL 

The approximate functions encountered in RSM rely 
mainly on multiple linear and second-order regression 
models, (Myers and Montgomery, 2002). The regression 
coefficients are fitted by least squares. The drawback is, 
that these models are global over a given region of interest. 
The idea applied by (Stander, 2001) is to make the 

minimization algorithm progression by building new 
response surfaces centered on each successive minimum. 
During the progression of the process, the region of interest 
moves or zooms and new numerical experiments are 
performed at each iteration. However, the continuity 
between subsequent approximations is not guaranteed and 
the information from designs evaluated at previous 
iterations is difficult to take into account.  

In the actual work, we explore the application of MLS 
techniques for the response estimation. The idea it to 
exploit the MLS capability to deal with irregular grids of 
data points accumulated during successive iterations. The 
approximation is local, what means that only the points 
closest to the current optimum are taken into account. The 
approximation coefficients are continuous when panning 
and zooming of the region of interest is performed. This 
allows for use of descent methods based on gradients of 
approximate response. A detailed presentation of MLS may 
be found in (Lancaster and Salkauskas, 1986) and is beyond 
the scope of the present paper. Here, we recall the matrix 
formulation of the approximation in an extent necessary to 
introduce our regression model.  

Given the function values for a set of experimental points 

ix  distributed according to a chosen DOE, the function f  
can be defined in terms of basis functions p  and some 
adjusting coefficients a  as  

( ) ( ) ( )Tf x p x a x  (6) 

In absence of a specific knowledge about the behavior of 
the solution, a common choice for the basis functions p  are 
linear and quadratic monomials  

22
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For two variables the approximation is given by  
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The coefficients ia  are determined by a weighted least 

squares method minimizing the error ( )J a  between the 
experimental and approximated values of the objective 
function  

    2

1
( ) ( )

N
T

i i i
i

J w f


   a x x p x x a x  (9) 

where N  is the number of performed experiments and ix  

are the experimental designs. The weights iw  insure the 
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continuity and the locality of the approximation and are 

defined 0iw  , decreasing within a fixed region around 

the point i  called domain of influence of ix  and vanish 
outside. The weight functions play a crucial role by 

influencing the way that the coefficients  ia  depend on the 
location of the design point x .  

( )Min J  gives -1( ) a x A Bf  (1) 

With 
T


A PWP
B PW

 (2) 

Where 
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 (3) 

By construction, the MLS approximation represents exactly 
the basis functions ip . Different versions of the 
approximation, like interpolating MLS may be obtained by 
a proper choice of the weights iw . 

The ia  may be interpreted as the coefficients of Taylor 

expansion of f  around the evaluation point x . In this 

sense, ia  correspond to the approximations of subsequent 
derivatives – we use the term of “diffuse derivative” and the 
symbol   to differentiate from the “full” derivative   

2

2
1 2

( )             
T

n

f f ff
x x x

  
  

a x    (13) 

When the design sensitivity information is available, a 
Hermite version of MLS may be defined by introducing a 
supplementary term relative to gradient of f  in the 
criterion Erreur ! Source du renvoi introuvable. yielding 
a modified criterion HJ  

    22
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 (14) 

where ir  is a characteristic size of domain of influence i , 
and the equilibrium between the two parts of the criterion is 
regulated by the coefficient  0,1t . 

In this formulation, the equations (1) and (2) remain valid 
with the matrices P  and W (3) replaced respectively by 

HP and HW  defined in the following manner  

 
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 (13) 

The formulation (14) reduces to 
Erreur ! Source du renvoi introuvable. when 0t  . 
Sensitivity information is crucial when high number of 
design variables is considered, so it should be used 
whenever possible. The Hermite MLS formulation 
accommodates easily such cases when only a subset of 
gradients is available. 
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4 DESIGN OF EXPERIMENTS (DOE) 

The successive response surface method uses a set of points 
of the design space to determine an approximate optimum. 
A new region of interest centers on each successive 
minimum and its size is determined by choosing a range for 
each variable. This set of points in the region of interest for 
which we perform numerical experiments is an instance of 
what is called a pattern, from which pattern search approach 
takes its name. Progress is made by panning the pattern and 
eventually zooming at its center. Erreur ! Source du 
renvoi introuvable. shows the possible evolution of a 4-
point pattern in 2D between iterations i and i+1. At the 
iteration i, the point ix  forms the center of the current 
working region of interest. 

The lower and upper bounds of this sub region are denoted 
in the figure by thick black dots and form the current 
pattern. The cost function f and eventually the constraints 

ig  are calculated for these points. The translation of the 
pattern for the next iteration is given by a descent method 
applied to the response surface fitted on black dot points. 
The evolution of the patterns size depends on the nature of 
the solution and on the accuracy of the current optimum. In 
Erreur ! Source du renvoi introuvable., the pattern taken 
into account at the iteration i+1 is given by the gray dots. 
However, a straightforward implementation of this 
approach does not allow to take into account at iteration i+1 
the designs computed at iteration i, even when they belong 
to the new region of interest. This is the case of the upper-
right black dot in Erreur ! Source du renvoi introuvable.. 
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1x  

 2x  

ix  

1ix  

 
Figure 1: Pattern search with panning and zooming of the region 

of interest 

In Erreur ! Source du renvoi introuvable. the hollow dots 
show a discrete set of points in design space where we 
decide to authorize the numerical experiments. This is what 
we call a virtual DOE as the experiments are designed but 
not yet performed at this stage. 

 

 

  
1x  
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2 h  

h  

 
Figure 2: Multiscale pattern search with Virtual DOE 

 

The idea is, that a virtual design is evaluated only when it 
enters the actual region of interest. In Erreur ! Source du 

renvoi introuvable. the point ix  was centered within the 
region of interest. In the actual approach, the search pattern 

is no more centered on ix  but is defined by the set of 
closest virtual designs and the scale of the resolution of the 
grid. In Erreur ! Source du renvoi introuvable. at 
iteration i   the pattern is defined by four solid black dots 
for resolution window size 2h . The MLS response surface 
is then fitted on these points. When the current design is 

translated to 1ix , the closest neighbors are selected with 

resolution refined to h . The new points are denoted by the 
three gray dots and the fourth one is reused from the 
previous pattern. In this way, the total number of 
experiments is reduced from 8 to 7. The gain is 
proportionally higher for bigger patterns.  

Moreover, taken into account the nonlinear nature of MLS, 
several iterations may be performed within a fixed pattern 
as long as the list of closest neighbors does not change, 
further reducing the number of experiments. 

 

 

5 OPTIMIZATION ALGORITHM 

The goal of the iterative optimization process is to reach a 
minimum point for the objective function. An iteration of 
the optimization algorithm is organized as follows: 

 advance the current design point x 
 search for the function values if  in the neighborhood of 

x 
 update the MLS coefficients ia  using (1) 

 compute the next move x  
 
This algorithm is valid for both the symmetric and the 
asymmetric patterns. The difference between the two 
variants lies in the interpretation of the step 2. For a 
symmetric pattern, new data points ix  are generated and 
evaluated at each iteration. In the asymmetric case, the 
design points are allowed on a predefined grid and 
evaluated values are gradually recorded in a database. The 
step 2 consists then in selecting the set of closest points, 
retrieving the computed values from the database and 
computing the missing ones. The database is then updated. 
There are several details to be considered when 
implementing the algorithm. Some of them, of technical 
character. In this category we cite the relaxation 
coefficients used to limit the move size in order to avoid 
premature convergence. Other are still subject of active 
research. This concern the computation of the next move in 
step 4 is more complicated in presence of constraint 
functions. 

 

 

6 THE SPLITTING RING BENCHMARK 

6.1 Problem description 

In this section we will present the study of an interesting 
springback problem proposed and studied experimentally 
by M.Y. Demeri from Ford® Laboratory (Demeri et al., 
2000). It consists in three operations: First a classical deep 
drawing operation is carried to get a cylindrical cup (Figure 
3.a), then the cup is cut to get a circular ring specimen 
(Figure 3.c), and the third operation is a radial splitting to 
open the ring under the initial stress effect (Figure 3.d).  
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a)                                                 b) 

          

c)                                              d)  
Figure 3: Splitting Ring Benchmark – Main operations 

 

The objective of this application is to simulate the forming 
and the springback processes to evaluate the ring opening 
gap value after springback. 

 

6.2 Deep drawing simulation 

The Geometric and material data are given in figure 4. The 
fast Inverse Approach (one-step method) has been used to 
carry out the deep drawing simulation using the commercial 
Stampack-OneStep® code (Quantech ATZ, 2003). Only a 
quarter of the cup is modeled by 3150 DKT12 (Batoz et al. 
1998) shell elements (Figure 5) with 5 Lobatto points 
through the thickness for plasticity integration and 6 
degrees of freedom per element. The obtained results have 
been compared to those obtained for the same problem but 
using both two incremental methods: The Implicit-Static 
using Abaqus® Standard code with the S3R triangular shell 
element and the Explicit-Dynamic using Stampack-
Incremental® commercial code with the BST rotation-free 
triangular shell element. 

In order to validate the results obtained using the one-step 
method, we compare bending moments and stresses at the 
end of forming between different codes. Figure 6 shows 
bending moment distribution Mxx on the final drawn cup. 
We can observe a good results correlation between the two 
methods. 

 

 
Figure 4: Geometrical and material data 

 

 
Figure 5: Mesh of the ¼ of cup, 3150 DKT12 shell elements 

 

From the qualitatively point of view, we represent 
circumferential stress distribution on the top flange along 
the curvilinear abscissa in figure 7. The same conclusion 
can be drawn; also we can remark good agreement of the 
results between the two methods.  

 

 

a) Stampack-Incremental® b) Stampack-OneStep® 

 
Figure 6: Bending moment distribution- comparison 

 

Because of its quite good quality results and its fewer CPU 
consuming time (see Table 1), the one-step method has 
been chosen for the deep drawing simulation problem 
coupled with the MLS method for the optimization of tools 
geometry (section 6.4).  

Thus, we can carry out the springback simulation using the 
final stresses obtained using the one-step method. 

 

 
Figure 7: Stress distribution on the top flange- comparison 
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6.3 Springback simulation 

When using the one-step method, the simulation of the 
springback process is done without modeling tools. Thus, 
the internal efforts (membrane forces and bending 
moments) obtained at the end of forming stage, are taken to 
be as initial efforts for the springback simulation. In 
Stampack-OneStep® code the springback simulation is done 
based on the fast incremental Updated Lagrangian 
Formulation (ULF). One half of the ring specimen is 
modeled using 1200 DKT12 shell elements with 12 degrees 
of freedom per element. The half of ring is clamped on one 
side and free on the other (Figure 8). 

 

 

 

Figure 8: Ring opening after springback 

The fast springback simulation was carried using ten steps, 
the principal springback results compared to others 
obtained using different codes are summarized in table 1. 
As we can see, results obtained with the one-step method 
are in good agreement with those obtained by Abaqus® and 
the experiments. We can also note that, CPU consuming 
time for the one-step method is insignificant compared to 
those of other methods. 

 

6.4 Die radius optimization 

The objective of the optimization procedure is to find the 
best die radius which leads to a minimum gap after 
springback. Figure 9 presents the definition of design 
variables and the objective function to minimize which is 
given by: 

   2 2 2

1 1 

     
 nnt nnt

T
i i Xi Y i Zi

i i
J d d u u u  (17) 

 
Table 1: Summary of principal springback results - comparison 

Method nb. elem. Gap [mm] CPU time 

Stampack- Incremental® 7000 45.7 2h 33m 53s 

Abaqus® Standard 6600 48.6 7h 09m 48s 

Gati et al. 2001 9984 45.0 2h 05m 20s 

Experiments  50  

Stampack-OneStep® 3150 47.8 0h 00m13 s 

 

 
  

Figure 9: Definition of the optimization problem 

 

The design variables (punch and die radii) are subjected to 
bounds constraints defined by: 

6 18 imm x mm  (18) 

The initial value of the design variable is x=12 mm. The 
real objective function is evaluated at each point during 
optimization process. The achieved minimum inside the 
working domain corresponds to x= xmax=18 mm. The 
reduction of the objective function is given in Figure 10.  
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Figure 10: Reduction of the objective function 

 

We can observe a good convergence property, only four 
iterations were necessary. 

The opening gap was calculated at the end of the 
optimization procedure, the value after optimization is 
about 21.3 mm, which is smaller than the initial value of 
47.8 mm. 

 

6.5 Material parameters identification 

The second optimization problem deals with material 
parameters. The objective is to determine the best material 
parameters to reduce the ring opening gap. The design 
variables are the two material hardening parameters K and 
n. Optimization variables are constrained between 
200 K 600 MPa   and  0.25 n 0.55 . A regular 
design of experiment is used based on 7x5 points where the 
objective function is evaluated initially by a sampling 
procedure before the optimization process. 
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Figure 11: Response surface approximation 

The pattern search used is based on a TCR9 with 9 points. 
Figure 11 shows the real function sampling and the 
approximated response surface. We can observe a good 
agreement between the two surfaces. The approximated 
response surface is optimized using the MLS method, the 
global minimum corresponding to ( K 200,n 0.55  ) 
was obtained. 

 

7 CONCLUSION 

We proposed a new response surface method involving 
Moving Least Squares regression models and pattern search 
optimization. The resulting response surface algorithms 
involve iterative improvement of the objective and 
constraint functions employing locally supported nonlinear 
approximations. We explored the strategies to reuse the 
experimental designs of previous iterations in order to 
reduce the number of costly finite element simulations.  

In the metal forming design example we built the response 
surfaces using a surrogate model based on a simplified one-
step Inverse Approach analysis. The resulting procedure 
was applied successfully for the design of tools geometry of 
ring benchmark. The validation of results using Stampack® 
explicit industrial code and Abaqus® implicit code showed 
that the proposed procedure used along with Inverse 
Approach surrogate model is well suited for deep drawing 
process design. These new methods needs to be further 
tested on larger examples with more design variables and 
nonlinear constraints. 
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