Numerical study of seismic earth pressures acting against a vertical retaining wall in frictional soil

  • Salah Zerguine Laboratoire de Recherche en Génie Civil, Université de Biskra, BP145 Biskra 07000, Algérie
  • Djamel Benmeddour Laboratoire de Recherche en Génie Civil, Université de Biskra, BP145 Biskra 07000, Algérie
  • Abdallah Zatar Département de Génie Civil et d’Hydraulique, Université de Biskra, BP145 Biskra 07000, Algérie

Abstract

The seismic earth pressures with presence of water, acting against a vertical retaining wall are often a function of many parameters. In the case of saturated sands, the earthquake causes failure of the retaining wall resulting by soil liquefaction. The theoretical methods for the calculation of seismic earth pressures available in literature remain unable to solve the envisaged problems. In this study the finite element code PLAXIS is used to evaluate the active earth pressure acting against a vertical rigid retaining wall. The soil is modeled by an elasto-plastic model with a Mohr-Coulomb yield criterion.  In this study, several parameters have been considered in order to evaluate the effect of soil acceleration with transitory flow and hydrostatic groundwater. The results have been compared with those obtained by the pseudo-dynamic and pseudo-static approaches. The results show the influence of the seismic action on the earth pressures.

References

Athanasopoulos-Zekkos, A., V. S. Vlachakis & G. A. Athanasopoulos (2013) Phasing issues in the seismic response of yielding, gravity-type earth retaining walls–Overview and results from a FEM study. Soil Dynamics and Earthquake Engineering 55: 59-70.
Benmeddour, D., M. Mellas, R. Frank & A. Mabrouki (2012) Numerical study of passive and active earth pressures of sands. Computers and Geotechnics 40: 34–44.
Bhattacharjee, A. & A. Murali Krishna (2011) Behavior of gravity retaining wall subjected to seismic excitation using FLAC 3D. International Journal of Earth Science and Engineering 4(6): 71-74.
Brinkgreve, R. B. J. E. Engin, W. M Swolfs (2012) Plaxis user’s manual. Netherlands: Plaxis BV.
Choudhury, D. & S. S. Nimbalkar (2006) Pseudo-dynamic approach of seismic active earth pressure behind retaining wall. Geotechnical and Geological Engineering 24(5): 1103-1113.
Choudhury, D., S. S. Nimbalkar & J. N. Mandal (2006) Comparison of Pseudo-Static and Pseudo-Dynamic Methods for Seismic Earth Pressure on Retaining Wall. Journal of Indian Geophysical Union 10(4):263-271.
Combescure, D. (2006) Eléments de dynamique des structures. Illustrations à l’aide de CAST3M. www.cea/castem.
Ebeling, R. M. & E. E. Morrison (1992) The Seismic Design of Waterfront Retaining structures. Technical Report ITL-92-11/NCEL TR-939. Port Hueneme, California: US Army Corps of Engineers.
Fang, Y. J. Chen & C. Chen (1997) Earth Pressures with Sloping Backfill. Journal of Geotechnical and Geoenvironmental Engineering, 123(3): 250-259.
Frank, R. (2014) Eurocode 7 on 'Geotechnical design': a code for soil-structure interaction. Journal of Applied Engineering Science & Technology 1(1): 1-10.
Inoue, K., K. Miura, N Otsuka, N Yoshida & T. Sasajima (2003) Numerical analysis of the earth pressure during earthquake on the gravity type quay wall. Proceedings of the 13th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, pp. 250-254.
Loukidis, D. & R. Salgado. (2012) Active pressure on gravity walls supporting purely frictional soils. Canadian Geotechnical Journal, 49(1):78-97.
Mononobe, N. & H. Matsuo (1929) On the determination of earth pressure during earthquake. Proceedings of the 2nd World Engineering Conference, pp. 179-185.
Nakamura, S. (2006) Reexamination of Mononobe-Okabe theory of gravity retaining walls using centrifuge model tests. Soils and Foundations 46(2):135-146.
Okabe, S. (1924) General theory of earth pressure and seismic stability of retaining wall and dam. Journal of Japanese Society of Civil Engineering 10(6): 1277-1323.
Seed, H. B. & R. V. Whitman (1970) Design of earth retaining structures for dynamic loads. Proceedings of the ASCE specialty conference on lateral stresses in the ground and design of earth retaining structures, pp. 103-147.
Simonelli, A. L., P. Carafa, A. Feola, A. J. Crewe & C. A. Taylor (2000) Retaining walls under seismic actions: shaking table testing and numerical approaches, 12th WCEE, paper no. 1885.
Steedman, R. S. & X. Zeng (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique 40(1): 103-112.
Tiznado, J. C. & F. Rodrĭguez-Roa (2011) Seismic lateral movement prediction for gravity retaining walls on granular soils. Soil Dynamics and Earthquake Engineering 31(3): 391-400.
Published
2016-08-07
How to Cite
ZERGUINE, Salah; BENMEDDOUR, Djamel; ZATAR, Abdallah. Numerical study of seismic earth pressures acting against a vertical retaining wall in frictional soil. Journal of Applied Engineering Science & Technology, [S.l.], v. 2, n. 1, p. 43-49, aug. 2016. ISSN 2571-9815. Available at: <https://revues.univ-biskra.dz/index.php/jaest/article/view/1749>. Date accessed: 19 nov. 2024.
Section
Section C: Geotechnical and Civil Engineering

Keywords

Retaining wall; Frictional soil; Seismic earth pressure; Finite element; PLAXIS

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.