Experimental and numerical analyses of a thin cylindrical shell model

  • Oussama Temami Laboratoire de recherche en Génie Civil, Hydraulique, Développement Durable et Environnement, LARGHYDE, Université de Biskra, B.P. 145 RP
  • Djamal Hamadi Laboratoire de recherche en Génie Civil, Hydraulique, Développement Durable et Environnement, LARGHYDE, Université de Biskra, B.P. 145 RP
  • Abdallah Zatar Département de Génie Civil et Hydraulique, Université de Biskra B.P 07000
  • Ashraf Ayoub School of Engineering and Mathematical Sciences, City University London, Northampton Square London EC1V OHB

Abstract

The analysis of thin shell structures is generally based on theoretical principles. The experimental tests on this type of structure are important for understanding the effect of loading and the geometrical shapes on its mechanical behavior. In this paper, an experimental test of a cylindrical shell under the effect of concentrated static loads is presented. A comparative numerical study is carried out by using two finite elements: the first element called ACM_RSBE5, recently formulated, and the second one, S4R, of ABAQUS code are used for the study of thin shells. The experimental results are compared with those obtained numerically. The results of both elements, ACM-RSBE5 and S4R, are in agreement with those obtained experimentally. The efficiency and the importance of the approach of the flat shell element for thin shell structures are confirmed.

References

Abaqus (2011) Version 6.14. Dassault Systemes Simulia Corporation.
Adini, A., R. W. Clough (1961) Analysis of plate bending by the finite element method, Report to the Nat. Sci. Found., U.S.A., G 7337.
Ashwell, D. G., A. B. Sabir (1972) A new cylindrical shell finite element based on simple independent strain function, International Journal of Mechanical Sciences 14 (03): 171-183.
Cook, R. D. (1994) Four-node ‘flat’ shell element: drilling degrees of freedom, membrane–bending coupling, warped geometry, and behavior, Computers and Structures 50(4): 549-555.
Djoudi, M. S., H. Bahai (2003) A shallow shell finite element for the linear and nonlinear analysis of cylindrical shells. Engineering structures (25): 769- 778.
Hamadi, D., A. Ayoub, O. Abdelhafid (2015) A new flat shell finite element for the linear analysis of thin shell structures, European Journal of Computational Mechanics 24(6): 232-255.
Katili, I. , J. L., Batoz, J. M., Imam, A., Hamdouni, O. Millet (2015) The development of DKMQ plate bending element for thick to thin shell analysis based on the Naghdi/Reissner/Mindlin shell theory, Finite Elements in Analysis and Design 100:12–27.
Melosh, R. J. (1963) Basis of derivation of matrices for the direct stiffness method, J.AIAA 1(7): 1631-1637.
Poulsen, P. N., L. Damkilde (1996) A flat triangular shell element with loof nodes, International Journal for Numerical Methods in Engineering, 39(22): 3867-3887.
Zienkiewicz, O. C. (1977) The finite element method, McGraw-Hill, (UK) London.
Published
2016-12-22
How to Cite
TEMAMI, Oussama et al. Experimental and numerical analyses of a thin cylindrical shell model. Journal of Applied Engineering Science & Technology, [S.l.], v. 2, n. 2, p. 99-103, dec. 2016. ISSN 2571-9815. Available at: <https://revues.univ-biskra.dz/index.php/jaest/article/view/1897>. Date accessed: 05 jan. 2025.
Section
Section B: Thermal, Mechanical and Materials Engineering

Keywords

Experimental test; Cylindrical shell model; Flat shell element; Numerical analysis

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.