Time effects in geomaterials
Abstract
In this paper, time effects, seen as strain rate effects and creep phenomenon, on the mechanical behaviour of geomaterials are considered. Coupling between these effects and partial saturation of geomaterials is more particularly studied. An elasto-visco-plastic model, called RASTRA, is presented and validated from the comparison with experimental data.
Résumé : Dans cet article, les effets du temps, vus comme les effets de la vitesse de chargement et le phénomène de fluage, sur le comportement mécanique des géomatériaux sont abordés. Le couplage entre ces effets et le caractère partiellement saturé des géomatériaux est plus particulièrement étudié. Un modèle élasto-visco-plastique, appelé RASTRA, est présenté puis validé sur la base d’une comparaison avec des données expérimentales.
Mots clés : Vitesse de chargement, fluage, succion, saturation partielle, élastoplasticité.
References
Alonso, E.E., A. Gens, A. Josa (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430.
Alonso, E.E., S. Olivella, N.M. Pinyol (2005) A review of Beliche dam. Géotechnique 55(4):267–285.
Augustesen, A., M. Liingaard, P.V. Lade (2004) Evaluation of time-dependent behaviour of soils. Int J Geomech (ASCE) 4(3):137–156.
Bjerrum, L. (1967) Engineering geology of Norwegian normally-consolidated marine clays as related to settlement of buildings. Géotechnique 17: 181–118.
Borja, R.I., E.A. Kavazanjian (1985) Constitutive model for the stress–strain-time behaviour of wet clays. Géotechnique 35(3): 283–298.
Collin, F., Y.J. Cui, Ch. Schroeder, R. Charlier (2002) Mechanical behaviour of chalk reservoir: numerical modelling of water sensitivity and time dependence effects. In: Proc. ISRM 2003 – technology roadmap for rocks mechanics, South Africa.
Datcheva, M., R. Charlier, F. Collin (2001) Constitutive equations and numerical modelling of time effects in soft porous rocks. Lect Notes Computer Sci. 1998: 222–229.
De Gennaro, V., P. Delage, Y.J. Cui, Ch. Schroeder, F. Collin (2003) Time-dependent behaviour of oil reservoir chalk: a multiphase approach. Soils Found 43(4): 131–148.
De Gennaro, V., P. Delage, G. Priol, F. Collin, Y.J. Cui (2004) On the collapse behaviour of oil reservoir chalk. Géotechnique 54(6): 415–420.
De Gennaro, V., J.M. Pereira, M.S. Gutierrez, R.J. Hickman (2009) On the viscoplastic modelling of saturated and partially saturated porous chalks. Ital Geotech J 1–2009:44–64.
De Gennaro, V., J.M. Pereira (2013) A viscoplastic constitutive model for unsaturated geomaterials. Computers and Geotechnics 54(Oct): 143–151.
Di Benedetto, H., F. Tatsuoka, M. Ishihara (2002) Time-dependent shear deformation characteristics of sand and their constitutive modelling. Soils Found 42(2): 1–22.
Dragon, A., Z. Mroz (1979) A model for plastic creep of rock-like materials accounting for the kinetics of fracture. Int J Rock Mech Min Sci. 16: 253–259.
Fabre, G., F. Pellet (2006) Creep and time-dependent damage in argillaceous rocks. Int JRock Mech Min Sci. 43:950–960.
Fodil, A., W. Aloulou, P.Y. Hicher (1997) Viscoplastic behaviour of soft clay. Géotechnique 47(3): 581–591.
Herbstová, V. (2009) Herle I. Structure transitions of clay fills in North-Western Bohemia. Eng Geol 104(3–4): 157–166.
Hickman, R.J., M.S. Gutierrez (2007) Formulation of a three-dimensional rate-dependent constitutive model for chalk and porous rocks. Int J Numer Anal Meth Geomech 31(4): 583–605.
Kim Y.T., S. Leroueil (2001) Modelling the viscoplastic behaviour of clays during consolidation: application to Berthierville clay in both laboratory and field conditions. Can Geotech J 38(3): 484–497.
Krogsboll, A. (1998) Constitutive model with time deformations. Eng Geol 49:285–292.
Laloui, L., S. Leroueil, S. Chalindar (2008) Modelling the combined effect of strain rate and temperature on one-dimensional compression of soils. Can Geotech J 45: 1765–1777.
Lemaitre, J., J.L. Chaboche (1985) Mécanique des matériaux solides. Dunod, 532 p.
Leroueil, S., M. Kabbaj, F. Tavenas, R. Bouchard (1985) Stress-strain-strain rate relation for compressibility of sensitive natural clays. Géotechnique 35(2): 159–180.
Leroueil, S. (2006) The isotache approach. Where are we 50 years after its development by Prof. Šuklje Proc. 13th Danube-European Conf. on geotechnical engineering, Ljubljana vol. 2, pp. 55–88.
Liingaard, M., P. Augustesen, P.V. Lade (2004) Characterization of models for time- dependent behavior of soils. Int J Geomech ASCE 4(3): 157-177.
Malvern, L.E (1951) The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain rate effect. J Appl Mech 18: 203-208.
Muñoz-Castelblanco, J.A., P.Delage, J.M. Pereira, Y.J. Cui (2011) Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Géotech Lett 1(April-June): 17–22.
Nguyen, H.D., V. De Gennaro, P. Delage, C. Sorgi (2008) Retention and compressibility properties of a partially saturated mine chalk. In: Proc. unsaturated soils: advances in geo-engineering, E-UNSAT, Durham, UK.
Nova, R. (1982) A viscoplastic constitutive model for normally consolidated clays. In: Proc. IUTAM Conf. on Def. and failure of Granular Materials, Delft. pp. 287–95.
Oldecop, L.A., E.E. Alonso (2003) Suction effects on rockfill compressibility. Géotechnique 53(2): 289-292.
Oldecop, L.A., E.E. Alonso (2007) Theoretical investigation of the time-dependent behaviour of rockfill. Géotechnique 57(3): 289–302.
Pasachalk 2 (2004) Mechanical behavior of partially and multiphase saturated chalks fluid-skeleton interaction: main factor of chalk oil reservoirs compaction and related subsidence – part 2. Final report, EC Contract no. ENK6-2000-00089.
Pereira, J.M., V. De Gennaro (2009) Time dependent behaviour of fluids filled geomaterials: application to reservoir formations. In: Proc. 4th biot conference on poromechanics, June 8–10, 2009. Columbia University, New York.
Perzyna, P. (1964) The constitutive equations for rate sensitive plastic materials. Quart Appl Mech 20: 321–32.
Pijaudier-Cabot, G., J.M. Pereira editors (2012) Geomechanics in CO2 storage facilities. London: ISTE-Wiley.
Priol, G. (2005) Comportement mécanique d’une craie pétrolifère – comportement différé et mouillabilité. Doctoral Thesis, Ecole nationale des ponts et chaussées, Paris.
Priol, G., V. De Gennaro, P. Delage, T. Servant (2007) Experimental investigation on the time dependent behaviour of a multiphase chalk. In: T. Schanz, editor. Springer Proc. Physics 112, Experimental unsaturated soil mechanics, pp. 161–7.
Sorensen, K.K., B.B. Baudet, B. Simpson (2007) Influence of structure on the time- dependent behaviour of a stiff sedimentary clay. Géotechnique 57(1): 113-124.
Šuklje, L (1957) The analysis of the consolidation process by the isotache method. In: Proc. 4th Int. Conf. on Soil Mech. and Found. Engng., London, vol. 1, pp. 200–206.
Tatsuokan F., F. Santucci de Magistris, K. Hayano, J. Koseki, Y. Momoya (2000) Some new aspects of time effects on the stress-strain behaviour of stiff geomaterials. Proc. Int. Conf. on the geotechnics of hard soils-soft rocks, pp. 1285–1371.
Vaid, Y.P., R.G. Campanella (1977) Time-dependent behaviour of undisturbed clay. J Geotech Eng Div ASCE 103(GT7): 693–709.
Vallin, V., J.M. Pereira, A. Fabbri, H. Wong (2013) Numerical modelling of the hydro- chemo-mechanical behaviour of geomaterials in the context of CO2 injection. Int J Numer Anal Meth Geomech 37(17): 3052–3069.
Vermeer, P.A., H.P. Neher (2000) A soft soil model that accounts for creep. In: Proc. beyond 2000 in computational geotechnics 10 years of PLAXIS international, Balkema, Rotterdam, pp. 249–261.
Yin, J.H., J. Graham (1999) Elastic viscoplastic modelling of the time-dependent stress- strain behaviour of soils. Can Geotech J 36: 736–745.
Yin, Z.Y., P.Y. Hicher, Y. Riou, H.W. Huang (2007) An elasto-viscoplastic model for soft clays. Soil and rock behaviour and modelling. Geotech Special Publ 150, ASCE, pp. 312–219.
Keywords
J. Appl. Eng. Sci. Technol. (JAEST - ISSN 2352-9873) is a peer-reviewed quarterly journal dedicated to the applied engineering sciences and technology. The JAEST provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
There is no submission or publication fee for papers published in the JAEST.
Authors who publish in the JAEST agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in the JAEST.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in the JAEST.
- Authors are permitted to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the JAEST and a link to the online abstract for the final published Work in the Journal.