Surface morphology, structural and electrical properties of electrodeposited Fe85Ni15/ITO films
Résumé
Series of Fe85Ni15 films have been grown on tin-doped indium oxide (ITO)-coated glass
substrates by the electrodeposition technique. The samples were made using different chemical
potentials and deposition times, t. The structural properties and the surface morphology have been
studied by the X-ray diffraction (XRD), scanning electron microscope, equipped with high power
optics thermal field Emission (SEM–TFE) and a surface profilometry. The electrical properties were
inferred from Hall effect measurements. The texture, lattice parameter, grain size, surface roughness,
sheet resistance and electrical resistivity have been investigated. As the deposition time t increases, a
change in texture from <110> to <211> is observed. This change strongly affects grain size, surface
roughness behaviors and the electrical properties. These various experimental results will be discussed
and correlated.
Keywords: A. Thin films, A. NiFe alloy, C. X-ray diffraction, D. electrical properties.
PACS: 73.61.At, 81.20.-n, 75.50.Bb, 07.85.Jy, 81.10.-h
Références
John O'M. Bockris et al. Plenum Press, New York 1992. pp 418.
[2] F. HARTY, J. A. McGEOUGH and R. M. TULLOCH. Surf. Technology 12 (1981) 39-55.
[3] Y. D. Gamburg, G. Zangari, Theory and Practice of Metal Electrodeposition, Book chapter,
Springer New York 2011, pp 205-232
[4] Aravinda CL, Mayanna SM. Trans IMF. 77 (1999) 87.
[5] Li HQ, F. Ebrahimi Mater. Sci. Engineer. A 347 (2003) 93.
[6] S. Morioka and M. Tanahaschi, J. Jpn. Inst. Met. 25 (10) (1961) 683.
[7] J. W. Wolf, J. Am. Electroplaters'Soc. 121 (1957) 1.
[8] J. W. Wolf, Proc. Am. Electroplaters'Soc. 43 (1956) 215.
[9] J. W. Wolf and H. W. Katz, Proc. Electronic Component Conf., Philadelphia, PA, 1959, pp. 15-20.
[10] R.M. Bozart, Phys. Rev. 26 (1925) 390.
[11] J. Tsu and J. Sallo, U.S. Patent 3 (031) (1962) 386.
[12] R. S. Smith, L. E. Godicki and J. C. Lloyd, J. Electrochem. Soc. 108 (8) (1961) 779.
[13] T. B. Avadeeva, U.S.S.R. Patent. 155 (1964) 072.
[14] V.I. Lainer, Vestn. Mashinostr. 1 (1964) 32.
[15] A. Brenner, "Electrodeposition of Alloys, Principle and Practice", Volume 1, Academic Press,
New York and London, (1963).
Revue science des matériaux, Laboratoire LARHYSS N°05, Juin 2015 pp.17-28
Fatima Nemlaa,b, Djellal Cherrad*,c, M.S.Aidab, A. Layadi d
Revue science des matériaux, Laboratoire LARHYSS ISSN 2352-9954
28
[16] H. Dahms, J. M. Croll, J. Elecrochem. Soc. 112 (1965) 771.
[17] T. Krause, L. Arulnayagam, M. Pritzker, J. Electrochem. Soc. 144 (1997) 960.
[18] B. Qi, X. Ni, D. Li, H. Zheng, Chem. Lett. 37 (2008) 336.
[19] Ibro Tabakovic, Venkateswara inturi, Jeremy Thurn, Mark Kief, Electrochem. Acta 55 (2010)
6749.
[20] B. Liu, R. Huang, J. Wang, H.M. Widatallah, H. Lu, J. Zhang, J.Liu, J. Appl. Phys. 85 (2) (1999)
1010.
[21] Chang-wei Su, Feng-jiao He, Hui Ju, Yu-bin Zhang, Er-Li Wang, Electrochimica Acta. 54 (2009)
6257.
[22] B. Ghebouli, S.M.Chérif, A. Layadi, B. Helifa, M. Boudissa, J. Magnetism. Magnet. Mater. 312
(2007) 194.
[23] R. Hamzaoui , O. Elkedim , N. Fenineche , E. Gaffet , J. Craven , Mat. Sci. Engineer. A 360
(2003) 299-305
[24] Xiaobai Chen, Hong Qiu, PingWu , Fengping Wang, LiqingPan , Yue Tian, Phys. B. 362 (2005)
255.