Pressure effects on the structural, elastic , electronic and optical properties of ZnO from first-principles calculations
Résumé
First-principles calculations of the structural, electronic, optical and elastic properties of ZnO as a function of the pressure have been performed within density functional theory using Ultra soft pseudo potentials and generalized gradient approximation (GGA) for the exchange and correlation energy. Through our results, we note that the lattice constants decrease with the pressure increasing. Also, the elastic constants C11, C12, C13 and C33 and the bulk modulus B increase with the pressure increasing. However, the elastic constants C44, the Shear modulus (G) and Young’s modulus (E) decrease slowly with increasing pressure, the band gap increases with the pressure increasing and ZnO has direct band. As pressure increases, the static dielectric constants ɛ1(0) and static refraction index n(0) decrease. Our calculated results are in good agreement with experimental data and other theoretical calculations.
Keywords: DFT calculation, electronic, optical, elastic, under pressure
Références
[2] J.M. Recio, M.A. Blanco, V. Luana, R. Pandey, L. Gerward, J.S. Olsen, Phys. Rev. B 58 (1998) 8949.
[3] H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz, M.P. Pasternak, Phys. Rev. B 53 (1996) 11425.
[4] J.E. Jaffe, A.C. Hess, Phys. Rev. B 48 (1993) 7903.
[5] J.E. Jaffe, J.A. Snyder, Z. Lin, A.C. Hess, Phys. Rev. B 62 (2000) 1660.
[6] C. Bates, W. White, R. Roy, Science 137 (1962) 993.
[7] J.C. Jamieson, Phys. Earth. Planet. Int. 3 (1970) 201.
[8] S.-C. Yu, I.L. Spain, E.F. Skelton, Solid State Commun. 25 (1978) 49.
[9] F. Decremps, J. Zhang, B. Li, R.C. Liebermann, Phys. Rev. B 63 (2001) 224105.
[10] F. Decremps, J. Zhang, R.C. Liebermann, Europhys. Lett. 51 (2000) 268.
[11] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J Phys: Condens Matter, 2002, 14: 2717-2744.
[12] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigen value formalism [J]. Phys Rev B, 1990, 41(11): 7892-7895.
[13] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
[14] THOMAS H F, ALMLOF J. General methods for geometry and wave function optimization [J]. J Phys Chem, 1992, 96(24): 9768-9774.
[15] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13(12): 5188-5192.
[16] F.Decremps,F.Datchi,A.M.Saitta,A.Polian,Phys.Rev.B68(2003)104101.
[17] H.Karzel, W.Potzel, M.K¨ offerlein, W.Schiessl, M.Steiner, U.Hiller, G.M. Kalvius, D.W.Mitchell, T.P.Das, P.Blaha, K.Schwartz, M.P.Pasternak, Phys.Rev.B53(1996)11425
[18]J.E.Jaffe,J.A.Snyder,Z.Lin,A.C.Hess,Phys.Rev.B62(2000)1660.
[19]A.Schleife,F.Fuchs,J.Furthm¨ uller,F.Bechstedt,Phys.Rev.B73(2006) 245212.
[20] J.Serrano,A.H.Romero,F.J.Manjo´ n, R.Lauck,M.Cardona,A.Rubio,Phys.Rev. B 69(2004)094306.
[21] A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, 1971.
[22] L Bing, Zhou Xun, Linghu Rong-Feng, Wang Xiao-Lu, and Yang Xiang-Dong, Chin. Phys. B. 20, 3 (2011) 036104.
[23] Chang K J, Froyen S and Cohen M L 1983 J. Phys. C:Solid State Phys. 16 3475
[24] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, London, 1954.
[25] O. Madelung (Ed.), Landolt-Börnstein, New Series, Group III: Solid State Physics Low Frequency Properties of Dielectric Crystals: Elastic Constants, vol. 29a, Springer, Berlin, 1993.
[26] L. DONG and S.P. ALPAY, Journal of Electronic Materials, Vol. 41, No. 11, 2012