Moderate Deviations Principle and Central Limit Theorem for Stochastic Cahn-Hilliard Equation in Holder Norm

  • Ratsarasaina R. M. Faculty of Sciences Technology, Departement of Mathematics and Informatics, University of Antananarivo, B.P.906, Ankatso, 101, Antananarivo, Madagascar. E-mail: ratsarasainaralphmartial@gmail.com
  • Rabeherimanana T. J. Corresponding author, Faculty of Sciences Technology, Department of Mathematics and Informatics, University of Antananarivo, B.P.906, Ankatso, 101, Antananarivo, Madagascar. E-mail: rabeherimanana.toussaint@gmx.fr

Résumé

We consider a stochastic Cahn-Hilliard partial differential equation driven by a space-time white noise. In this paper, we prove a Central Limit Theorem (CLT) and a Moderate Deviation Principle (MDP) for a perturbed stochastic Cahn-Hilliard equation in Holder norm. The techniques are based on Freidlin-Wentzell’s Large Deviations Principle. The exponential estimates in the space of Holder continuous functions and the Garsia-Rodemich-Rumsey’s lemma plays an important role, an another approach than the Li.R. ¨and Wang.X. Finally, we estabish the CLT and MDP for stochastic Cahn-Hilliard equation with uniformly Lipschitzian coefficients.



Keywords: Large Deviations Principle, Moderate Deviations Principle, Central Limit Theorem, Holder space, Stochastic Cahn-Hilliard equation, Green’s function, Freidlin-Wentzell’s method.
MSC: 60H15, 60F05, 35B40, 35Q62


REFERENCES
[1] Ben Arous, G., & Ledoux, M. (1994). Grandes déviations de Freidlin-Wentzell en norme hölderienne. Séminaire de probabilités de Strasbourg, 28, 293-299 .‏ Search in Google Scholar   Article view
[2] Boulanba, L., & Mellouk, M. (2020). Large deviations for a stochastic Cahn–Hilliard equation in Hölder norm. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 23(02), 2050010.. Search in Google Scholar   Digital Object Identifier
[3] Cahn, J. W., & Hilliard, J. E. (1971). Spinodal decomposition: A reprise. Acta Metallurgica, 19(2), 151-161.‏. Search in Google Scholar   Digital Object Identifier
[4] Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 28(2), 258-267.. Search in Google Scholar   Digital Object Identifier
[5] Cardon-Weber, C. (2001). Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli, 777-816.. Search in Google Scholar   Digital Object Identifier
[6] Chenal, F., & Millet, A. (1997). Uniform large deviations for parabolic SPDEs and applications. Stochastic Processes and their Applications, 72(2), 161-186. Search in Google Scholar   Digital Object Identifier
[7] Freidlin, M. I. (1970). On small random perturbations of dynamical systems. Russian Mathematical Surveys, 25(1), 1-55. Search in Google Scholar   Digital Object Identifier
[8] Li, R., & Wang, X. (2018). Central limit theorem and moderate deviations for a stochastic Cahn-Hilliard equation. arXiv preprint arXiv:1810.05326.. Search in Google Scholar   Digital Object Identifier
[9] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. Lecture notes in mathematics, 265-439.‏.  Search in Google Scholar   Digital Object Identifier
[10] Wang, R., & Zhang, T. (2015). Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Analysis, 42, 99-113.‏. Search in Google Scholar   Digital Object Identifier


 


Communicated Editor: Chala Adel
Manuscript received Dec 07, 2023; revised Fb 09, 2024; accepted Feb 16, 2024; published May 13, 2024.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

##submission.authorWithAffiliation##

Ratsarasaina R. M., Faculty of Sciences Technology, Departement of Mathematics and Informatics, University of Antananarivo, B.P.906, Ankatso, 101, Antananarivo, Madagascar.
E-mail: ratsarasainaralphmartial@gmail.com

##submission.authorWithAffiliation##

Rabeherimanana T.J., corresponding author, Faculty of Sciences Technology, Departement of Mathematics and Informatics, University of Antananarivo, B.P.906, Ankatso, 101, Antananarivo, Madagascar.
E-mail: rabeherimanana.toussaint@gmx.fr

Publiée
2024-05-13
Comment citer
M., Ratsarasaina R.; J., Rabeherimanana T.. Moderate Deviations Principle and Central Limit Theorem for Stochastic Cahn-Hilliard Equation in Holder Norm. International Journal of Applied Mathematics and Simulation, [S.l.], v. 1, n. 1, mai 2024. ISSN 2992-1708. Disponible à l'adresse : >https://revues.univ-biskra.dz/index.php/ijams/article/view/4554>. Date de consultation : 21 nov. 2024
Rubrique
Articles